{-# OPTIONS --allow-unsolved-metas #-} open import Level open import Category module CCC where open import HomReasoning open import cat-utility open import Relation.Binary.PropositionalEquality open import HomReasoning record IsCCC {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( 1 : Obj A ) ( ○ : (a : Obj A ) → Hom A a 1 ) ( _∧_ : Obj A → Obj A → Obj A ) ( <_,_> : {a b c : Obj A } → Hom A c a → Hom A c b → Hom A c (a ∧ b) ) ( π : {a b : Obj A } → Hom A (a ∧ b) a ) ( π' : {a b : Obj A } → Hom A (a ∧ b) b ) ( _<=_ : (a b : Obj A ) → Obj A ) ( _* : {a b c : Obj A } → Hom A (a ∧ b) c → Hom A a (c <= b) ) ( ε : {a b : Obj A } → Hom A ((a <= b ) ∧ b) a ) : Set ( c₁ ⊔ c₂ ⊔ ℓ ) where field -- cartesian e2 : {a : Obj A} → ∀ { f : Hom A a 1 } → A [ f ≈ ○ a ] e3a : {a b c : Obj A} → { f : Hom A c a }{ g : Hom A c b } → A [ A [ π o < f , g > ] ≈ f ] e3b : {a b c : Obj A} → { f : Hom A c a }{ g : Hom A c b } → A [ A [ π' o < f , g > ] ≈ g ] e3c : {a b c : Obj A} → { h : Hom A c (a ∧ b) } → A [ < A [ π o h ] , A [ π' o h ] > ≈ h ] π-cong : {a b c : Obj A} → { f f' : Hom A c a }{ g g' : Hom A c b } → A [ f ≈ f' ] → A [ g ≈ g' ] → A [ < f , g > ≈ < f' , g' > ] -- closed e4a : {a b c : Obj A} → { h : Hom A (c ∧ b) a } → A [ A [ ε o < A [ (h *) o π ] , π' > ] ≈ h ] e4b : {a b c : Obj A} → { k : Hom A c (a <= b ) } → A [ ( A [ ε o < A [ k o π ] , π' > ] ) * ≈ k ] *-cong : {a b c : Obj A} → { f f' : Hom A (a ∧ b) c } → A [ f ≈ f' ] → A [ f * ≈ f' * ] open ≈-Reasoning A e'2 : ○ 1 ≈ id1 A 1 e'2 = begin ○ 1 ≈↑⟨ e2 ⟩ id1 A 1 ∎ e''2 : {a b : Obj A} {f : Hom A a b } → ( ○ b o f ) ≈ ○ a e''2 {a} {b} {f} = begin ○ b o f ≈⟨ e2 ⟩ ○ a ∎ π-id : {a b : Obj A} → < π , π' > ≈ id1 A (a ∧ b ) π-id {a} {b} = begin < π , π' > ≈↑⟨ π-cong idR idR ⟩ < π o id1 A (a ∧ b) , π' o id1 A (a ∧ b) > ≈⟨ e3c ⟩ id1 A (a ∧ b ) ∎ distr-π : {a b c d : Obj A} {f : Hom A c a }{g : Hom A c b } {h : Hom A d c } → ( < f , g > o h ) ≈ < ( f o h ) , ( g o h ) > distr-π {a} {b} {c} {d} {f} {g} {h} = begin < f , g > o h ≈↑⟨ e3c ⟩ < π o < f , g > o h , π' o < f , g > o h > ≈⟨ π-cong assoc assoc ⟩ < ( π o < f , g > ) o h , (π' o < f , g > ) o h > ≈⟨ π-cong (car e3a ) (car e3b) ⟩ < f o h , g o h > ∎ _×_ : { a b c d : Obj A } ( f : Hom A a c ) (g : Hom A b d ) → Hom A (a ∧ b) ( c ∧ d ) f × g = < ( f o π ) , (g o π' ) > π-exchg : {a b c : Obj A} {f : Hom A c a }{g : Hom A c b } → < π' , π > o < f , g > ≈ < g , f > π-exchg {a} {b} {c} {f} {g} = begin < π' , π > o < f , g > ≈⟨ distr-π ⟩ < π' o < f , g > , π o < f , g > > ≈⟨ π-cong e3b e3a ⟩ < g , f > ∎ π'π : {a b : Obj A} → < π' , π > o < π' , π > ≈ id1 A (a ∧ b) π'π = trans-hom π-exchg π-id exchg-π : {a b c d : Obj A} {f : Hom A c a }{g : Hom A d b } → < f o π , g o π' > o < π' , π > ≈ < f o π' , g o π > exchg-π {a} {b} {c} {d} {f} {g} = begin < f o π , g o π' > o < π' , π > ≈⟨ distr-π ⟩ < (f o π) o < π' , π > , (g o π' ) o < π' , π > > ≈↑⟨ π-cong assoc assoc ⟩ < f o (π o < π' , π > ) , g o (π' o < π' , π >)> ≈⟨ π-cong (cdr e3a) (cdr e3b) ⟩ < f o π' , g o π > ∎ π≈ : {a b c : Obj A} {f f' : Hom A c a }{g g' : Hom A c b } → < f , g > ≈ < f' , g' > → f ≈ f' π≈ {_} {_} {_} {f} {f'} {g} {g'} eq = begin f ≈↑⟨ e3a ⟩ π o < f , g > ≈⟨ cdr eq ⟩ π o < f' , g' > ≈⟨ e3a ⟩ f' ∎ π'≈ : {a b c : Obj A} {f f' : Hom A c a }{g g' : Hom A c b } → < f , g > ≈ < f' , g' > → g ≈ g' π'≈ {_} {_} {_} {f} {f'} {g} {g'} eq = begin g ≈↑⟨ e3b ⟩ π' o < f , g > ≈⟨ cdr eq ⟩ π' o < f' , g' > ≈⟨ e3b ⟩ g' ∎ distr-* : {a b c d : Obj A } { h : Hom A (a ∧ b) c } { k : Hom A d a } → ( h * o k ) ≈ ( h o < ( k o π ) , π' > ) * distr-* {a} {b} {c} {d} {h} {k} = begin h * o k ≈↑⟨ e4b ⟩ ( ε o < (h * o k ) o π , π' > ) * ≈⟨ *-cong ( begin ε o < (h * o k ) o π , π' > ≈↑⟨ cdr ( π-cong assoc refl-hom ) ⟩ ε o ( < h * o ( k o π ) , π' > ) ≈↑⟨ cdr ( π-cong (cdr e3a) e3b ) ⟩ ε o ( < h * o ( π o < k o π , π' > ) , π' o < k o π , π' > > ) ≈⟨ cdr ( π-cong assoc refl-hom) ⟩ ε o ( < (h * o π) o < k o π , π' > , π' o < k o π , π' > > ) ≈↑⟨ cdr ( distr-π ) ⟩ ε o ( < h * o π , π' > o < k o π , π' > ) ≈⟨ assoc ⟩ ( ε o < h * o π , π' > ) o < k o π , π' > ≈⟨ car e4a ⟩ h o < k o π , π' > ∎ ) ⟩ ( h o < k o π , π' > ) * ∎ α : {a b c : Obj A } → Hom A (( a ∧ b ) ∧ c ) ( a ∧ ( b ∧ c ) ) α = < ( π o π ) , < ( π' o π ) , π' > > α' : {a b c : Obj A } → Hom A ( a ∧ ( b ∧ c ) ) (( a ∧ b ) ∧ c ) α' = < < π , ( π o π' ) > , ( π' o π' ) > β : {a b c d : Obj A } { f : Hom A a b} { g : Hom A a c } { h : Hom A a d } → ( α o < < f , g > , h > ) ≈ < f , < g , h > > β {a} {b} {c} {d} {f} {g} {h} = begin α o < < f , g > , h > ≈⟨⟩ ( < ( π o π ) , < ( π' o π ) , π' > > ) o < < f , g > , h > ≈⟨ distr-π ⟩ < ( ( π o π ) o < < f , g > , h > ) , ( < ( π' o π ) , π' > o < < f , g > , h > ) > ≈⟨ π-cong refl-hom distr-π ⟩ < ( ( π o π ) o < < f , g > , h > ) , ( < ( ( π' o π ) o < < f , g > , h > ) , ( π' o < < f , g > , h > ) > ) > ≈↑⟨ π-cong assoc ( π-cong assoc refl-hom ) ⟩ < ( π o (π o < < f , g > , h >) ) , ( < ( π' o ( π o < < f , g > , h > ) ) , ( π' o < < f , g > , h > ) > ) > ≈⟨ π-cong (cdr e3a ) ( π-cong (cdr e3a ) e3b ) ⟩ < ( π o < f , g > ) , < ( π' o < f , g > ) , h > > ≈⟨ π-cong e3a ( π-cong e3b refl-hom ) ⟩ < f , < g , h > > ∎ record CCC {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) : Set ( c₁ ⊔ c₂ ⊔ ℓ ) where field 1 : Obj A ○ : (a : Obj A ) → Hom A a 1 _∧_ : Obj A → Obj A → Obj A <_,_> : {a b c : Obj A } → Hom A c a → Hom A c b → Hom A c (a ∧ b) π : {a b : Obj A } → Hom A (a ∧ b) a π' : {a b : Obj A } → Hom A (a ∧ b) b _<=_ : (a b : Obj A ) → Obj A _* : {a b c : Obj A } → Hom A (a ∧ b) c → Hom A a (c <= b) ε : {a b : Obj A } → Hom A ((a <= b ) ∧ b) a isCCC : IsCCC A 1 ○ _∧_ <_,_> π π' _<=_ _* ε open Functor record CCCFunctor {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') (ca : CCC A) (cb : CCC B) (functor : Functor A B) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ')) where field f1 : FObj functor (CCC.1 ca) ≡ CCC.1 cb f○ : {a : Obj A} → B [ FMap functor (CCC.○ ca a) ≈ subst (λ k → Hom B (FObj functor a) k) (sym f1) (CCC.○ cb (FObj functor a)) ] f∧ : {a b : Obj A} → FObj functor ( CCC._∧_ ca a b ) ≡ CCC._∧_ cb (FObj functor a ) (FObj functor b) f<= : {a b : Obj A} → FObj functor ( CCC._<=_ ca a b ) ≡ CCC._<=_ cb (FObj functor a ) (FObj functor b) f<> : {a b c : Obj A} → (f : Hom A c a ) → (g : Hom A c b ) → B [ FMap functor (CCC.<_,_> ca f g ) ≈ subst (λ k → Hom B (FObj functor c) k ) (sym f∧ ) ( CCC.<_,_> cb (FMap functor f ) ( FMap functor g )) ] fπ : {a b : Obj A} → B [ FMap functor (CCC.π ca {a} {b}) ≈ subst (λ k → Hom B k (FObj functor a) ) (sym f∧ ) (CCC.π cb {FObj functor a} {FObj functor b}) ] fπ' : {a b : Obj A} → B [ FMap functor (CCC.π' ca {a} {b}) ≈ subst (λ k → Hom B k (FObj functor b) ) (sym f∧ ) (CCC.π' cb {FObj functor a} {FObj functor b}) ] f* : {a b c : Obj A} → (f : Hom A (CCC._∧_ ca a b) c ) → B [ FMap functor (CCC._* ca f) ≈ subst (λ k → Hom B (FObj functor a) k) (sym f<=) (CCC._* cb ((subst (λ k → Hom B k (FObj functor c) ) f∧ (FMap functor f) ))) ] fε : {a b : Obj A} → B [ FMap functor (CCC.ε ca {a} {b} ) ≈ subst (λ k → Hom B k (FObj functor a)) (trans (cong (λ k → CCC._∧_ cb k (FObj functor b)) (sym f<=)) (sym f∧)) (CCC.ε cb {FObj functor a} {FObj functor b}) ] open Equalizer open import equalizer record Mono {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {b a : Obj A} (mono : Hom A b a) : Set (c₁ ⊔ c₂ ⊔ ℓ) where field isMono : {c : Obj A} ( f g : Hom A c b ) → A [ A [ mono o f ] ≈ A [ mono o g ] ] → A [ f ≈ g ] open Mono eMonic : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {b a : Obj A} { f g : Hom A b a } → (equ : Equalizer A f g ) → Mono A (equalizer equ) eMonic A equ = record { isMono = λ f g → monic equ } iso-mono : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b c : Obj A } {m : Hom A a b} ( mono : Mono A m ) (i : Iso A a c ) → Mono A (A [ m o Iso.≅← i ] ) iso-mono A {a} {b} {c} {m} mono i = record { isMono = λ {d} f g → im f g } where im : {d : Obj A} (f g : Hom A d c ) → A [ A [ A [ m o Iso.≅← i ] o f ] ≈ A [ A [ m o Iso.≅← i ] o g ] ] → A [ f ≈ g ] im {d} f g mf=mg = begin f ≈↑⟨ idL ⟩ id1 A _ o f ≈↑⟨ car (Iso.iso← i) ⟩ ( Iso.≅→ i o Iso.≅← i) o f ≈↑⟨ assoc ⟩ Iso.≅→ i o (Iso.≅← i o f) ≈⟨ cdr ( Mono.isMono mono _ _ (if=ig mf=mg) ) ⟩ Iso.≅→ i o (Iso.≅← i o g) ≈⟨ assoc ⟩ ( Iso.≅→ i o Iso.≅← i) o g ≈⟨ car (Iso.iso← i) ⟩ id1 A _ o g ≈⟨ idL ⟩ g ∎ where open ≈-Reasoning A if=ig : ( m o Iso.≅← i ) o f ≈ ( m o Iso.≅← i ) o g → m o (Iso.≅← i o f ) ≈ m o ( Iso.≅← i o g ) if=ig eq = trans-hom assoc (trans-hom eq (sym-hom assoc ) ) iso-mono→ : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b c : Obj A } {m : Hom A a b} ( mono : Mono A m ) (i : Iso A c a ) → Mono A (A [ m o Iso.≅→ i ] ) iso-mono→ A {a} {b} {c} {m} mono i = record { isMono = λ {d} f g → im f g } where im : {d : Obj A} (f g : Hom A d c ) → A [ A [ A [ m o Iso.≅→ i ] o f ] ≈ A [ A [ m o Iso.≅→ i ] o g ] ] → A [ f ≈ g ] im {d} f g mf=mg = begin f ≈↑⟨ idL ⟩ id1 A _ o f ≈↑⟨ car (Iso.iso→ i) ⟩ ( Iso.≅← i o Iso.≅→ i) o f ≈↑⟨ assoc ⟩ Iso.≅← i o (Iso.≅→ i o f) ≈⟨ cdr ( Mono.isMono mono _ _ (if=ig mf=mg) ) ⟩ Iso.≅← i o (Iso.≅→ i o g) ≈⟨ assoc ⟩ ( Iso.≅← i o Iso.≅→ i) o g ≈⟨ car (Iso.iso→ i) ⟩ id1 A _ o g ≈⟨ idL ⟩ g ∎ where open ≈-Reasoning A if=ig : ( m o Iso.≅→ i ) o f ≈ ( m o Iso.≅→ i ) o g → m o (Iso.≅→ i o f ) ≈ m o ( Iso.≅→ i o g ) if=ig eq = trans-hom assoc (trans-hom eq (sym-hom assoc ) ) ---- -- -- Sub Object Classifier as Topos -- pull back on -- -- iso ○ b -- e ⇐====⇒ b -----------→ 1 m ∙ f ≈ m ∙ g → f ≈ g -- | | | -- | m | | ⊤ -- | ↓ char m ↓ Ker h = Equalizer (char m mono) (⊤ ∙ ○ a ) -- + ------→ a -----------→ Ω m = Equalizer (char m mono) (⊤ ∙ ○ a ) -- ker h h -- -- if m is an equalizer, there is an iso between e and b as k, and if we have the iso, m becomes an equalizer. -- equalizer.equalizerIso : {a b c : Obj A} → (f g : Hom A a b ) → (equ : Equalizer A f g ) -- → (m : Hom A c a) → ( ker-iso : IsoL A m (equalizer equ) ) → IsEqualizer A m f g record IsTopos {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (c : CCC A) ( Ω : Obj A ) ( ⊤ : Hom A (CCC.1 c) Ω ) (Ker : {a : Obj A} → ( h : Hom A a Ω ) → Equalizer A h (A [ ⊤ o (CCC.○ c a) ])) (char : {a b : Obj A} → (m : Hom A b a) → Mono A m → Hom A a Ω) : Set ( suc c₁ ⊔ suc c₂ ⊔ suc ℓ ) where field ker-m : {a b : Obj A} → (m : Hom A b a ) → (mono : Mono A m) → IsEqualizer A m (char m mono) (A [ ⊤ o (CCC.○ c a) ]) char-uniqueness : {a b : Obj A } {h : Hom A a Ω} → A [ char (equalizer (Ker h)) (record { isMono = λ f g → monic (Ker h)}) ≈ h ] char-iso : {a a' b : Obj A} → (p : Hom A a b ) (q : Hom A a' b ) → (mp : Mono A p) →(mq : Mono A q) → Iso A a a' → A [ char p mp ≈ char q mq ] char-cong : {a b : Obj A } { m m' : Hom A b a } { mono : Mono A m } { mono' : Mono A m' } → A [ m ≈ m' ] → A [ char m mono ≈ char m' mono' ] char-cong {a} {b} {m} {m'} {mo} {mo'} m=m' = char-iso m m' mo mo' (≡-iso A _) ker : {a : Obj A} → ( h : Hom A a Ω ) → Hom A ( equalizer-c (Ker h) ) a ker h = equalizer (Ker h) char-m=⊤ : {a b : Obj A} → (m : Hom A b a) → (mono : Mono A m) → A [ A [ char m mono o m ] ≈ A [ ⊤ o CCC.○ c b ] ] char-m=⊤ {a} {b} m mono = begin char m mono o m ≈⟨ IsEqualizer.fe=ge (ker-m m mono) ⟩ (⊤ o CCC.○ c a) o m ≈↑⟨ assoc ⟩ ⊤ o (CCC.○ c a o m ) ≈⟨ cdr (IsCCC.e2 (CCC.isCCC c)) ⟩ ⊤ o CCC.○ c b ∎ where open ≈-Reasoning A record Topos {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (c : CCC A) : Set ( suc c₁ ⊔ suc c₂ ⊔ suc ℓ ) where field Ω : Obj A ⊤ : Hom A (CCC.1 c) Ω Ker : {a : Obj A} → ( h : Hom A a Ω ) → Equalizer A h (A [ ⊤ o (CCC.○ c a) ]) char : {a b : Obj A} → (m : Hom A b a ) → Mono A m → Hom A a Ω isTopos : IsTopos A c Ω ⊤ Ker char Monik : {a : Obj A} (h : Hom A a Ω) → Mono A (equalizer (Ker h)) Monik h = record { isMono = λ f g → monic (Ker h ) } record NatD {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( 1 : Obj A) : Set ( suc c₁ ⊔ suc c₂ ⊔ suc ℓ ) where field Nat : Obj A nzero : Hom A 1 Nat nsuc : Hom A Nat Nat open NatD record IsToposNat {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( 1 : Obj A) (iNat : NatD A 1 ) ( initialNat : (nat : NatD A 1 ) → Hom A (Nat iNat) (Nat nat) ) : Set ( suc c₁ ⊔ suc c₂ ⊔ suc ℓ ) where field izero : (nat : NatD A 1 ) → A [ A [ initialNat nat o nzero iNat ] ≈ nzero nat ] isuc : (nat : NatD A 1 ) → A [ A [ initialNat nat o nsuc iNat ] ≈ A [ nsuc nat o initialNat nat ] ] record ToposNat {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( 1 : Obj A) : Set ( suc c₁ ⊔ suc c₂ ⊔ suc ℓ ) where field iNat : NatD A 1 initialNat : (nat : NatD A 1 ) → Hom A (Nat iNat) (Nat nat) nat-unique : (nat : NatD A 1 ) → {g : Hom A (Nat iNat) (Nat nat) } → A [ A [ g o nzero iNat ] ≈ nzero nat ] → A [ A [ g o nsuc iNat ] ≈ A [ nsuc nat o g ] ] → A [ g ≈ initialNat nat ] isToposN : IsToposNat A 1 iNat initialNat