--- -- -- Equalizer -- -- f' f -- c --------> a ----------> b -- | . ----------> -- | . g -- |h . -- v . g' -- d -- -- Shinji KONO ---- open import Category -- https://github.com/konn/category-agda open import Level open import Category.Sets module equalizer { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } where open import HomReasoning open import cat-utility record Equalizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where field equalizer : {c d : Obj A} (f' : Hom A c a) (g' : Hom A d a) → Hom A c d equalize : {c d : Obj A} (f' : Hom A c a) (g' : Hom A d a) → A [ A [ f o f' ] ≈ A [ A [ g o g' ] o equalizer f' g' ] ] uniqueness : {c d : Obj A} (f' : Hom A c a) (g' : Hom A d a) ( e : Hom A c d ) → A [ A [ f o f' ] ≈ A [ A [ g o g' ] o e ] ] → A [ e ≈ equalizer f' g' ] record EqEqualizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where field α : {e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → Hom A e a γ : {c d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A c e δ : {e a b : Obj A} → (f : Hom A a b) → Hom A a e b1 : {e : Obj A} → A [ A [ f o α {e} f g ] ≈ A [ g o α {e} f g ] ] b2 : {c d : Obj A } → {h : Hom A d a } → A [ A [ α {c} f g o γ {c} f g h ] ≈ A [ h o α (A [ f o h ]) (A [ g o h ]) ] ] b3 : {e : Obj A} → A [ A [ α {e} f f o δ {e} f ] ≈ id1 A a ] -- b4 : {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o k ] ) ≈ k ] b4 : {c d : Obj A } {k : Hom A c a} → A [ A [ γ f g ( A [ α f g o k ] ) o δ {c} (A [ f o A [ α f g o k ] ] ) ] ≈ k ] -- A [ α f g o β f g h ] ≈ h β : { d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A d e β {d} f g h = A [ γ f g h o δ {d} (A [ f o h ]) ] lemma-equ1 : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A} (f g : Hom A a b) → Equalizer A f g → EqEqualizer A f g lemma-equ1 A {a} {b} f g eqa = record { α = {!!} ; γ = {!!} ; δ = {!!} ; b1 = {!!} ; b2 = {!!} ; b3 = {!!} ; b4 = {!!} }