module universal-mapping where open import Category -- https://github.com/konn/category-agda open import Level open import Category.HomReasoning open Functor record IsUniversalMapping {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') ( U : Functor B A ) ( F : Obj A -> Obj B ) ( η : (a : Obj A) -> Hom A a ( FObj U (F a) ) ) ( _* : { a : Obj A}{ b : Obj B} -> ( Hom A a (FObj U b) ) -> Hom B (F a ) b ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where field universalMapping : (a' : Obj A) ( b' : Obj B ) -> { f : Hom A a' (FObj U b') } -> A [ A [ FMap U ( f * ) o η a' ] ≈ f ] record UniversalMapping {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') ( U : Functor B A ) ( F : Obj A -> Obj B ) ( η : (a : Obj A) -> Hom A a ( FObj U (F a) ) ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where infixr 11 _* field _* : { a : Obj A}{ b : Obj B} -> ( Hom A a (FObj U b) ) -> Hom B (F a ) b isUniversalMapping : IsUniversalMapping A B U F η _* open NTrans open import Category.Cat record IsAdjunction {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') ( U : Functor B A ) ( F : Functor A B ) ( η : NTrans A A identityFunctor ( U ○ F ) ) ( ε : NTrans B B ( F ○ U ) identityFunctor ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where field adjoint1 : {a' : Obj A} { b' : Obj B } -> ( f : Hom A a' (FObj U b') ) -> A [ A [ ( FMap U ( TMap ε b' )) o ( TMap η ( FObj U b' )) ] ≈ Id {_} {_} {_} {A} (FObj U b') ] adjoint2 : {a' : Obj A} { b' : Obj B } -> ( f : Hom A a' (FObj U b') ) -> B [ B [ ( TMap ε ( FObj F a' )) o ( FMap F ( TMap η a' )) ] ≈ Id {_} {_} {_} {B} (FObj F a') ] record Adjunction {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') ( U : Functor B A ) ( F : Functor A B ) ( η : NTrans A A identityFunctor ( U ○ F ) ) ( ε : NTrans B B ( F ○ U ) identityFunctor ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where field isAdjection : IsAdjunction A B U F η ε open Adjunction open UniversalMapping Solution : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') ( U : Functor B A ) ( F : Functor A B ) ( ε : NTrans B B ( F ○ U ) identityFunctor ) -> { a : Obj A} { b : Obj B} -> ( f : Hom A a (FObj U b) ) -> Hom B (FObj F a ) b Solution A B U F ε {a} {b} f = B [ TMap ε b o FMap F f ] Lemma1 : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') ( U : Functor B A ) ( F : Functor A B ) ( η : NTrans A A identityFunctor ( U ○ F ) ) ( ε : NTrans B B ( F ○ U ) identityFunctor ) -> Adjunction A B U F η ε -> UniversalMapping A B U (FObj F) (TMap η) Lemma1 A B U F η ε adj = record { _* = Solution A B U F ε ; isUniversalMapping = record { universalMapping = universalMapping } } where universalMapping : (a' : Obj A) ( b' : Obj B ) -> { f : Hom A a' (FObj U b') } -> A [ A [ FMap U ( Solution A B U F ε f ) o TMap η a' ] ≈ f ] universalMapping a b = ?