module deductive (Atom : Set) where -- Deduction Theorem -- positive logic ( deductive system based on graph ) data Obj : Set where ⊤ : Obj atom : Atom → Obj _∧_ : Obj → Obj → Obj _<=_ : Obj → Obj → Obj data Arrow : Obj → Obj → Set where hom : (a b : Obj) → Arrow a b id : (a : Obj ) → Arrow a a _・_ : {a b c : Obj } → Arrow b c → Arrow a b → Arrow a c ○ : {a : Obj } → Arrow a ⊤ π : {a b : Obj } → Arrow ( a ∧ b ) a π' : {a b : Obj } → Arrow ( a ∧ b ) b <_,_> : {a b c : Obj } → Arrow c a → Arrow c b → Arrow c (a ∧ b) ε : {a b : Obj } → Arrow ((a <= b) ∧ b ) a _* : {a b c : Obj } → Arrow (c ∧ b ) a → Arrow c ( a <= b ) -- every proof b → c with assumption a has following forms data φ {a : Obj} ( x : Arrow ⊤ a ) : {b c : Obj} → Arrow b c → Set where i : {b c : Obj} → φ x ( hom b c ) ii : φ x {⊤} {a} x iii : {b c' c'' : Obj } { f : Arrow b c' } { g : Arrow b c'' } (ψ : φ x f ) (χ : φ x g ) → φ x < f , g > iv : {b c d : Obj } { f : Arrow d c } { g : Arrow b d } (ψ : φ x f ) (χ : φ x g ) → φ x ( f ・ g ) v : {b c' c'' : Obj } { f : Arrow (b ∧ c') c'' } (ψ : φ x f ) → φ x ( f * ) α : {a b c : Obj } → Arrow (( a ∧ b ) ∧ c ) ( a ∧ ( b ∧ c ) ) α = < π ・ π , < π' ・ π , π' > > -- genetate (a ∧ b) → c proof from proof b → c with assumption a kx∈a : {a b c : Obj } → ( x : Arrow ⊤ a ) → {z : Arrow b c } → ( y : φ {a} x z ) → Arrow (a ∧ b) c kx∈a x {k} i = k ・ π' kx∈a x ii = π kx∈a x (iii ψ χ ) = < kx∈a x ψ , kx∈a x χ > kx∈a x (iv ψ χ ) = kx∈a x ψ ・ < π , kx∈a x χ > kx∈a x (v ψ ) = ( kx∈a x ψ ・ α ) *