open import Category -- https://github.com/konn/category-agda open import Level open import Category.Sets module freyd2 where open import HomReasoning open import cat-utility open import Relation.Binary.Core open import Function ---------- -- -- a : Obj A -- U : A → Sets -- U ⋍ Hom (a,-) -- -- A is Locally small postulate ≈-≡ : { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } {a b : Obj A } { x y : Hom A a b } → (x≈y : A [ x ≈ y ]) → x ≡ y import Relation.Binary.PropositionalEquality -- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g → ( λ x → f x ≡ λ x → g x ) postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ ---- -- -- Hom ( a, - ) is Object mapping in co Yoneda Functor -- ---- open NTrans open Functor open Limit open IsLimit open import Category.Cat HomA : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) (a : Obj A) → Functor A (Sets {c₂}) HomA {c₁} {c₂} {ℓ} A a = record { FObj = λ b → Hom A a b ; FMap = λ {x} {y} (f : Hom A x y ) → λ ( g : Hom A a x ) → A [ f o g ] -- f : Hom A x y → Hom Sets (Hom A a x ) (Hom A a y) ; isFunctor = record { identity = λ {b} → extensionality A ( λ x → lemma-y-obj1 {b} x ) ; distr = λ {a} {b} {c} {f} {g} → extensionality A ( λ x → lemma-y-obj2 a b c f g x ) ; ≈-cong = λ eq → extensionality A ( λ x → lemma-y-obj3 x eq ) } } where lemma-y-obj1 : {b : Obj A } → (x : Hom A a b) → A [ id1 A b o x ] ≡ x lemma-y-obj1 {b} x = let open ≈-Reasoning A in ≈-≡ {_} {_} {_} {A} idL lemma-y-obj2 : (a₁ b c : Obj A) (f : Hom A a₁ b) (g : Hom A b c ) → (x : Hom A a a₁ )→ A [ A [ g o f ] o x ] ≡ (Sets [ _[_o_] A g o _[_o_] A f ]) x lemma-y-obj2 a₁ b c f g x = let open ≈-Reasoning A in ≈-≡ {_} {_} {_} {A} ( begin A [ A [ g o f ] o x ] ≈↑⟨ assoc ⟩ A [ g o A [ f o x ] ] ≈⟨⟩ ( λ x → A [ g o x ] ) ( ( λ x → A [ f o x ] ) x ) ∎ ) lemma-y-obj3 : {b c : Obj A} {f g : Hom A b c } → (x : Hom A a b ) → A [ f ≈ g ] → A [ f o x ] ≡ A [ g o x ] lemma-y-obj3 {_} {_} {f} {g} x eq = let open ≈-Reasoning A in ≈-≡ {_} {_} {_} {A} ( begin A [ f o x ] ≈⟨ resp refl-hom eq ⟩ A [ g o x ] ∎ ) -- {*}↓U has preinitial full subcategory iff U is representable record Representable { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( U : Functor A (Sets {c₂}) ) (b : Obj A) : Set (suc ℓ ⊔ (suc (suc c₂) ⊔ suc c₁ )) where field -- FObj U x : A → Set -- FMap U f = Set → Set -- λ b → Hom (a,b) : A → Set -- λ f → Hom (a,-) = λ b → Hom a b repr→ : NTrans A (Sets {c₂}) U (HomA A b ) repr← : NTrans A (Sets {c₂}) (HomA A b) U representable→ : {x : Obj A} → Sets [ Sets [ TMap repr→ x o TMap repr← x ] ≈ id1 (Sets {c₂}) (FObj (HomA A b) x )] representable← : {x : Obj A} → Sets [ Sets [ TMap repr← x o TMap repr→ x ] ≈ id1 (Sets {c₂}) (FObj U x)] -- HpreseveLimit : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → (b : Obj A) -- { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) -- → LimitPreserve A I (Sets {c₂}) ( HomA A b ) -- HpreseveLimit {_} { c₂} A b I = record { -- preserve = λ Γ limita → record { -- limit = λ a t → limitu a Γ t limita -- ; t0f=t = λ { a t i } → t0f=tu {a} Γ t limita {i} -- ; limit-uniqueness = λ { a t f } t=f → limit-uniquenessu {a} Γ limita t f t=f -- } -- } where -- limitu : ( a : Obj Sets ) → (Γ : Functor I A ) ( t : NTrans I Sets ( K Sets I a ) ((HomA A b) ○ Γ) ) → ( limita : Limit A I Γ ) → -- Hom Sets a (FObj (HomA A b) (a0 limita)) -- limitu = {!!} -- t0f=tu : { a : Obj Sets } → (Γ : Functor I A ) ( t : NTrans I Sets ( K Sets I a ) ((HomA A b) ○ Γ) ) → ( limita : Limit A I Γ ) → -- ∀ { i : Obj I } → Sets [ Sets [ TMap (LimitNat A I Sets Γ (a0 limita) (t0 limita) (HomA A b)) i o limitu a Γ t limita ] ≈ TMap t i ] -- t0f=tu = {!!} -- limit-uniquenessu : { a : Obj Sets } → (Γ : Functor I A ) -- → ( limita : Limit A I Γ ) → -- ( t : NTrans I Sets ( K Sets I a ) ((HomA A b) ○ Γ) ) → ( f : Hom Sets a (FObj (HomA A b) (a0 limita)) ) -- → ( ∀ { i : Obj I } → (Sets [ TMap (LimitNat A I Sets Γ (a0 limita) (t0 limita) (HomA A b)) i o f ] ≡ TMap t i ) ) -- → Sets [ limitu a Γ t limita ≈ f ] -- limit-uniquenessu = {!!} -- -- -- UpreseveLimit : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → ( U : Functor A (Sets {c₂}) ) (b : Obj A) -- { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) -- ( rep : Representable A U b ) → LimitPreserve A I (Sets {c₂}) U -- UpreseveLimit {_} { c₂} A U b I rep = record { -- preserve = λ Γ limita → record { -- limit = λ a t → limitu a Γ t limita -- ; t0f=t = λ { a t i } → t0f=tu {a} Γ t limita {i} -- ; limit-uniqueness = λ { a t f } t=f → limit-uniquenessu {a} Γ limita t f t=f -- } -- } where -- limitu : ( a : Obj (Sets {c₂}) ) → (Γ : Functor I A ) ( t : NTrans I Sets ( K Sets I a ) (U ○ Γ) ) → ( limita : Limit A I Γ ) → -- Hom Sets a (FObj U (a0 limita)) -- limitu = {!!} -- t0f=tu : { a : Obj (Sets {c₂}) } → (Γ : Functor I A ) ( t : NTrans I Sets ( K Sets I a ) (U ○ Γ) ) → ( limita : Limit A I Γ ) → -- ∀ { i : Obj I } → Sets [ Sets [ TMap (LimitNat A I Sets Γ (a0 limita) (t0 limita) U) i o limitu a Γ t limita ] ≈ TMap t i ] -- t0f=tu = {!!} -- limit-uniquenessu : { a : Obj (Sets {c₂}) } → (Γ : Functor I A ) -- → ( limita : Limit A I Γ ) → -- ( t : NTrans I Sets ( K Sets I a ) (U ○ Γ) ) → ( f : Hom Sets a (FObj U (a0 limita)) ) -- → ( ∀ { i : Obj I } → (Sets [ TMap (LimitNat A I Sets Γ (a0 limita) (t0 limita) U) i o f ] ≡ TMap t i ) ) -- → Sets [ limitu a Γ t limita ≈ f ] -- limit-uniquenessu = {!!} --