open import Category -- https://github.com/konn/category-agda open import Level module epi where open import Relation.Binary.Core data FourObject : Set where ta : FourObject tb : FourObject tc : FourObject td : FourObject data FourHom : FourObject → FourObject → Set where id-ta : FourHom ta ta id-tb : FourHom tb tb id-tc : FourHom tc tc id-td : FourHom td td arrow-ca : FourHom tc ta arrow-ab : FourHom ta tb arrow-bd : FourHom tb td arrow-cb : FourHom tc tb arrow-ad : FourHom ta td arrow-cd : FourHom tc td _×_ : {a b c : FourObject } → FourHom b c → FourHom a b → FourHom a c _×_ {x} {ta} {ta} id-ta y = y _×_ {x} {tb} {tb} id-tb y = y _×_ {x} {tc} {tc} id-tc y = y _×_ {x} {td} {td} id-td y = y _×_ {ta} {ta} {x} y id-ta = y _×_ {tb} {tb} {x} y id-tb = y _×_ {tc} {tc} {x} y id-tc = y _×_ {td} {td} {x} y id-td = y _×_ {tc} {ta} {tb} arrow-ab arrow-ca = arrow-cb _×_ {ta} {tb} {td} arrow-bd arrow-ab = arrow-ad _×_ {tc} {tb} {td} arrow-bd arrow-cb = arrow-cd _×_ {tc} {ta} {td} arrow-ad arrow-ca = arrow-cd _×_ {tc} {ta} {tc} () arrow-ca _×_ {ta} {tb} {ta} () arrow-ab _×_ {tc} {tb} {ta} () arrow-cb _×_ {ta} {tb} {tc} () arrow-ab _×_ {tc} {tb} {tc} () arrow-cb _×_ {tb} {td} {ta} () arrow-bd _×_ {ta} {td} {ta} () arrow-ad _×_ {tc} {td} {ta} () arrow-cd _×_ {tb} {td} {tb} () arrow-bd _×_ {ta} {td} {tb} () arrow-ad _×_ {tc} {td} {tb} () arrow-cd _×_ {tb} {td} {tc} () arrow-bd _×_ {ta} {td} {tc} () arrow-ad _×_ {tc} {td} {tc} () arrow-cd open FourHom assoc-× : {a b c d : FourObject } {f : (FourHom c d )} → {g : (FourHom b c )} → {h : (FourHom a b )} → ( f × (g × h)) ≡ ((f × g) × h ) assoc-× {_} {_} {_} {_} {id-ta} {y} {z} = refl assoc-× {_} {_} {_} {_} {id-tb} {y} {z} = refl assoc-× {_} {_} {_} {_} {id-tc} {y} {z} = refl assoc-× {_} {_} {_} {_} {id-td} {y} {z} = refl assoc-× {_} {_} {_} {_} {arrow-ca} {id-tc} {z} = refl assoc-× {_} {_} {_} {_} {arrow-ab} {id-ta} {z} = refl assoc-× {_} {_} {_} {_} {arrow-ab} {arrow-ca} {id-tc} = refl assoc-× {_} {_} {_} {_} {arrow-bd} {id-tb} {z} = refl assoc-× {_} {_} {_} {_} {arrow-bd} {arrow-ab} {id-ta} = refl assoc-× {_} {_} {_} {_} {arrow-bd} {arrow-ab} {arrow-ca} = refl assoc-× {_} {_} {_} {_} {arrow-bd} {arrow-cb} {id-tc} = refl assoc-× {_} {_} {_} {_} {arrow-cb} {id-tc} {z} = refl assoc-× {_} {_} {_} {_} {arrow-ad} {id-ta} {z} = refl assoc-× {_} {_} {_} {_} {arrow-ad} {arrow-ca} {id-tc} = refl assoc-× {_} {_} {_} {_} {arrow-cd} {id-tc} {id-tc} = refl FourId : (a : FourObject ) → (FourHom a a ) FourId ta = id-ta FourId tb = id-tb FourId tc = id-tc FourId td = id-td open import Relation.Binary.PropositionalEquality FourCat : Category zero zero zero FourCat = record { Obj = FourObject ; Hom = λ a b → FourHom a b ; _o_ = λ{a} {b} {c} x y → _×_ x y ; _≈_ = λ x y → x ≡ y ; Id = λ{a} → FourId a ; isCategory = record { isEquivalence = record {refl = refl ; trans = trans ; sym = sym } ; identityL = λ{a b f} → identityL {a} {b} {f} ; identityR = λ{a b f} → identityR {a} {b} {f} ; o-resp-≈ = λ{a b c f g h i} → o-resp-≈ {a} {b} {c} {f} {g} {h} {i} ; associative = λ{a b c d f g h } → assoc-× {a} {b} {c} {d} {f} {g} {h} } } where identityL : {A B : FourObject } {f : ( FourHom A B) } → ((FourId B) × f) ≡ f identityL {ta} {ta} {id-ta} = refl identityL {tb} {tb} {id-tb} = refl identityL {tc} {tc} {id-tc} = refl identityL {td} {td} {id-td} = refl identityL {tc} {ta} {arrow-ca} = refl identityL {ta} {tb} {arrow-ab} = refl identityL {tb} {td} {arrow-bd} = refl identityL {tc} {tb} {arrow-cb} = refl identityL {ta} {td} {arrow-ad} = refl identityL {tc} {td} {arrow-cd} = refl identityR : {A B : FourObject } {f : ( FourHom A B) } → ( f × FourId A ) ≡ f identityR {ta} {ta} {id-ta} = refl identityR {tb} {tb} {id-tb} = refl identityR {tc} {tc} {id-tc} = refl identityR {td} {td} {id-td} = refl identityR {tc} {ta} {arrow-ca} = refl identityR {ta} {tb} {arrow-ab} = refl identityR {tb} {td} {arrow-bd} = refl identityR {tc} {tb} {arrow-cb} = refl identityR {ta} {td} {arrow-ad} = refl identityR {tc} {td} {arrow-cd} = refl o-resp-≈ : {A B C : FourObject } {f g : ( FourHom A B)} {h i : ( FourHom B C)} → f ≡ g → h ≡ i → ( h × f ) ≡ ( i × g ) o-resp-≈ {a} {b} {c} {f} {x} {h} {y} refl refl = refl epi : {a b c : FourObject } {f₁ f₂ : Hom FourCat a b } { h : Hom FourCat b c } → FourCat [ h o f₁ ] ≡ FourCat [ h o f₂ ] → f₁ ≡ f₂ epi {ta} {ta} {c} {id-ta} {id-ta} {h} refl = refl epi {tb} {tb} {c} {id-tb} {id-tb} {h} refl = refl epi {tc} {tc} {c} {id-tc} {id-tc} {h} refl = refl epi {td} {td} {c} {id-td} {id-td} {h} refl = refl epi {tc} {ta} {c} {arrow-ca} {arrow-ca} {h} refl = refl epi {ta} {tb} {c} {arrow-ab} {arrow-ab} {h} refl = refl epi {tb} {td} {c} {arrow-bd} {arrow-bd} {h} refl = refl epi {tc} {tb} {c} {arrow-cb} {arrow-cb} {h} refl = refl epi {ta} {td} {c} {arrow-ad} {arrow-ad} {h} refl = refl epi {tc} {td} {c} {arrow-cd} {arrow-cd} {h} refl = refl monic : {a b c : FourObject } {g₁ g₂ : Hom FourCat b c } { h : Hom FourCat a b } → FourCat [ g₁ o h ] ≡ FourCat [ g₂ o h ] → g₁ ≡ g₂ monic {a} {ta} {ta} {id-ta} {id-ta} {h} refl = refl monic {a} {tb} {tb} {id-tb} {id-tb} {h} refl = refl monic {a} {tc} {tc} {id-tc} {id-tc} {h} refl = refl monic {a} {td} {td} {id-td} {id-td} {h} refl = refl monic {a} {tc} {ta} {arrow-ca} {arrow-ca} {h} refl = refl monic {a} {ta} {tb} {arrow-ab} {arrow-ab} {h} refl = refl monic {a} {tb} {td} {arrow-bd} {arrow-bd} {h} refl = refl monic {a} {tc} {tb} {arrow-cb} {arrow-cb} {h} refl = refl monic {a} {ta} {td} {arrow-ad} {arrow-ad} {h} refl = refl monic {a} {tc} {td} {arrow-cd} {arrow-cd} {h} refl = refl open import cat-utility open import Relation.Nullary open import Data.Empty record Rev {a b : FourObject } (f : Hom FourCat a b ) : Set where field rev : Hom FourCat b a eq : FourCat [ f o rev ] ≡ id1 FourCat b not-rev : ¬ ( {a b : FourObject } → (f : Hom FourCat a b ) → Rev f ) not-rev r = ⊥-elim ( lemma1 arrow-ab (Rev.rev (r arrow-ab)) (Rev.eq (r arrow-ab)) ) where lemma1 : (f : Hom FourCat ta tb ) → (e₁ : Hom FourCat tb ta ) → ( FourCat [ f o e₁ ] ≡ id1 FourCat tb ) → ⊥ lemma1 _ () eq