open import Category -- https://github.com/konn/category-agda open import Level open import Category.Sets module freyd {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) where open import cat-utility open import Relation.Binary.Core open Functor -- C is small full subcategory of A record SmallFullSubcategory {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (F : Functor A A ) ( FMap← : { a b : Obj A } → Hom A (FObj F a) (FObj F b ) → Hom A a b ) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where field ≈→≡ : {a b : Obj A } → { x y : Hom A (FObj F a) (FObj F b) } → (x≈y : A [ FMap F x ≈ FMap F y ]) → FMap F x ≡ FMap F y -- co-comain of FMap is local small full→ : { a b : Obj A } { x : Hom A (FObj F a) (FObj F b) } → A [ FMap F ( FMap← x ) ≈ x ] full← : { a b : Obj A } { x : Hom A a b } → A [ FMap← ( FMap F x ) ≈ x ] record PreInitial-SmallFullSubcategory {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (F : Functor A A ) ( FMap← : { a b : Obj A } → Hom A (FObj F a) (FObj F b ) → Hom A a b ) (SFS : SmallFullSubcategory A F FMap← ) : Set (suc ℓ ⊔ (suc c₁ ⊔ suc c₂)) where field pre-initial : ∀{ a : Obj A } → { a' : Obj A } → Hom A ( FObj F a' ) a uniqueness : ∀{ a : Obj A } → { a' : Obj A } → ( f' : Hom A ( FObj F a' ) a ) → A [ f' ≈ pre-initial {a} {a'} ]