-- Free Monoid and it's Universal Mapping ---- using Sets and forgetful functor -- Shinji KONO open import Category -- https://github.com/konn/category-agda open import Level module free-monoid { c c₁ c₂ ℓ : Level } where open import Category.Sets open import Category.Cat open import HomReasoning open import cat-utility open import Relation.Binary.Core open import Relation.Binary.PropositionalEquality open import universal-mapping -- from https://github.com/danr/Agda-projects/blob/master/Category-Theory/FreeMonoid.agda infixr 40 _::_ data List (A : Set c ) : Set c where [] : List A _::_ : A -> List A -> List A infixl 30 _++_ _++_ : {A : Set c } -> List A -> List A -> List A [] ++ ys = ys (x :: xs) ++ ys = x :: (xs ++ ys) ≡-cong = Relation.Binary.PropositionalEquality.cong list-id-l : { A : Set c } -> { x : List A } -> [] ++ x ≡ x list-id-l {_} {_} = refl list-id-r : { A : Set c } -> { x : List A } -> x ++ [] ≡ x list-id-r {_} {[]} = refl list-id-r {A} {x :: xs} = ≡-cong ( \y -> x :: y ) ( list-id-r {A} {xs} ) list-assoc : {A : Set c} -> { xs ys zs : List A } -> ( xs ++ ( ys ++ zs ) ) ≡ ( ( xs ++ ys ) ++ zs ) list-assoc {_} {[]} {_} {_} = refl list-assoc {A} {x :: xs} {ys} {zs} = ≡-cong ( \y -> x :: y ) ( list-assoc {A} {xs} {ys} {zs} ) list-o-resp-≈ : {A : Set c} -> {f g : List A } → {h i : List A } → f ≡ g → h ≡ i → (h ++ f) ≡ (i ++ g) list-o-resp-≈ {A} refl refl = refl list-isEquivalence : {A : Set c} -> IsEquivalence {_} {_} {List A } _≡_ list-isEquivalence {A} = -- this is the same function as A's equivalence but has different types record { refl = refl ; sym = sym ; trans = trans } open import Algebra.FunctionProperties using (Op₁; Op₂) open import Algebra.Structures open import Data.Product record ≡-Monoid : Set (suc c) where infixl 7 _∙_ field Carrier : Set c _∙_ : Op₂ Carrier ε : Carrier isMonoid : IsMonoid _≡_ _∙_ ε open ≡-Monoid record Monomorph ( a b : ≡-Monoid ) : Set (suc c) where field morph : Carrier a -> Carrier b identity : morph (ε a) ≡ ε b homo : ∀{x y} -> morph ( _∙_ a x y ) ≡ ( _∙_ b (morph x ) (morph y) ) open Monomorph _+_ : { a b c : ≡-Monoid } -> Monomorph b c -> Monomorph a b -> Monomorph a c _+_ {a} {b} {c} f g = record { morph = \x -> morph f ( morph g x ) ; identity = identity1 ; homo = homo1 } where identity1 : morph f ( morph g (ε a) ) ≡ ε c -- morph f (ε b) = ε c , morph g (ε a) ) ≡ ε b -- morph f morph g (ε a) ) ≡ morph f (ε b) = ε c identity1 = trans ( ≡-cong (morph f ) ( identity g ) ) ( identity f ) homo1 : ∀{x y} -> morph f ( morph g ( _∙_ a x y )) ≡ ( _∙_ c (morph f (morph g x )) (morph f (morph g y) ) ) -- ∀{x y} -> morph f ( morph g ( _∙_ a x y )) ≡ morph f ( ( _∙_ c (morph g x )) (morph g y) ) -- ∀{x y} -> morph f ( ( _∙_ c (morph g x )) (morph g y) ) -- ≡ ( _∙_ c (morph f (morph g x )) (morph f (morph g y) ) ) homo1 = trans (≡-cong (morph f ) ( homo g) ) ( homo f ) M-id : { a : ≡-Monoid } -> Monomorph a a M-id = record { morph = \x -> x ; identity = refl ; homo = refl } _==_ : { a b : ≡-Monoid } -> Monomorph a b -> Monomorph a b -> Set c _==_ f g = morph f ≡ morph g isMonoids : IsCategory ≡-Monoid Monomorph _==_ _+_ (M-id) isMonoids = record { isEquivalence = isEquivalence1 ; identityL = refl ; identityR = refl ; associative = refl ; o-resp-≈ = \{a} {b} {c} {f} {g} {h} {i} -> o-resp-≈ {a} {b} {c} {f} {g} {h} {i} } where o-resp-≈ : {a b c : ≡-Monoid } {f g : Monomorph a b } → {h i : Monomorph b c } → f == g → h == i → (h + f) == (i + g) o-resp-≈ {A} refl refl = refl isEquivalence1 : { a b : ≡-Monoid } -> IsEquivalence {_} {_} {Monomorph a b} _==_ isEquivalence1 = -- this is the same function as A's equivalence but has different types record { refl = refl ; sym = sym ; trans = trans } Monoids : Category _ _ _ Monoids = record { Obj = ≡-Monoid ; Hom = Monomorph ; _o_ = _+_ ; _≈_ = _==_ ; Id = M-id ; isCategory = isMonoids } A = Sets {c} B = Monoids open Functor U : Functor B A U = record { FObj = \m -> Carrier m ; FMap = \f -> morph f ; isFunctor = record { ≈-cong = \x -> x ; identity = refl ; distr = refl } } -- FObj list : (a : Set c) -> ≡-Monoid list a = record { Carrier = List a ; _∙_ = _++_ ; ε = [] ; isMonoid = record { identity = ( ( \x -> list-id-l {a} ) , ( \x -> list-id-r {a} ) ) ; isSemigroup = record { assoc = \x -> \y -> \z -> sym ( list-assoc {a} {x} {y} {z} ) ; isEquivalence = list-isEquivalence ; ∙-cong = \x -> \y -> list-o-resp-≈ y x } } } Generator : Obj A -> Obj B Generator s = list s -- solution open UniversalMapping -- [a,b,c] → f(a) ∙ f(b) ∙ f(c) Φ : {a : Obj A } {b : Obj B} { f : Hom A a (FObj U b) } → List a -> Carrier b Φ {a} {b} {f} [] = ε b Φ {a} {b} {f} ( x :: xs ) = _∙_ b ( f x ) (Φ {a} {b} {f} xs ) solution : (a : Obj A ) (b : Obj B) ( f : Hom A a (FObj U b) ) → Hom B (Generator a ) b solution a b f = record { morph = \(l : List a) -> Φ l ; identity = refl ; homo = \{x y} -> homo1 x y } where _*_ : Carrier b -> Carrier b -> Carrier b _*_ f g = _∙_ b f g homo1 : (x y : Carrier (Generator a)) → Φ ((Generator a ∙ x) y) ≡ (b ∙ Φ x) (Φ y) homo1 [] y = sym (proj₁ ( IsMonoid.identity ( isMonoid b) ) (Φ y)) homo1 (x :: xs) y = let open ≡-Reasoning in sym ( begin (Φ {a} {b} {f} (x :: xs)) * (Φ {a} {b} {f} y) ≡⟨⟩ ((f x) * (Φ {a} {b} {f} xs)) * (Φ {a} {b} {f} y) ≡⟨ ( IsMonoid.assoc ( isMonoid b )) _ _ _ ⟩ (f x) * ( (Φ {a} {b} {f} xs) * (Φ {a} {b} {f} y) ) ≡⟨ sym ( (IsMonoid.∙-cong (isMonoid b)) refl (homo1 xs y )) ⟩ (f x) * ( Φ {a} {b} {f} ( xs ++ y ) ) ≡⟨⟩ Φ {a} {b} {f} ( x :: ( xs ++ y ) ) ≡⟨⟩ Φ {a} {b} {f} ( (x :: xs) ++ y ) ≡⟨⟩ Φ {a} {b} {f} ((Generator a ∙ x :: xs) y) ∎ ) eta : (a : Obj A) → Hom A a ( FObj U (Generator a) ) eta a = \( x : a ) -> x :: [] -- Functional Extensionality Axiom (We cannot prove this in Agda / Coq, just assumming ) -- postulate extensionality : { a b : Obj A } {f g : Hom A a b } → (∀ {x} → (f x ≡ g x)) → ( f ≡ g ) postulate extensionality : Relation.Binary.PropositionalEquality.Extensionality c c FreeMonoidUniveralMapping : UniversalMapping A B U Generator eta FreeMonoidUniveralMapping = record { _* = \{a b} -> \f -> solution a b f ; isUniversalMapping = record { universalMapping = \{a b f} -> universalMapping {a} {b} {f} ; uniquness = \{a b f g} -> uniquness {a} {b} {f} {g} } } where universalMapping : {a : Obj A } {b : Obj B} { f : Hom A a (FObj U b) } → FMap U ( solution a b f ) o eta a ≡ f universalMapping {a} {b} {f} = let open ≡-Reasoning in begin FMap U ( solution a b f ) o eta a ≡⟨⟩ ( λ (x : a ) → Φ {a} {b} {f} (eta a x) ) ≡⟨⟩ ( λ (x : a ) → Φ {a} {b} {f} ( x :: [] ) ) ≡⟨⟩ ( λ (x : a ) → _∙_ b ( f x ) (Φ {a} {b} {f} [] ) ) ≡⟨⟩ ( λ (x : a ) → _∙_ b ( f x ) ( ε b ) ) ≡⟨ ≡-cong ( \ g -> ( ( λ (x : a ) → g x ) )) (extensionality {a} lemma-ext1) ⟩ ( λ (x : a ) → f x ) ≡⟨⟩ f ∎ where lemma-ext1 : ∀( x : a ) -> _∙_ b ( f x ) ( ε b ) ≡ f x lemma-ext1 x = ( proj₂ ( IsMonoid.identity ( isMonoid b) ) ) (f x) uniquness : {a : Obj A } {b : Obj B} { f : Hom A a (FObj U b) } → { g : Hom B (Generator a) b } → (FMap U g) o (eta a ) ≡ f → B [ solution a b f ≈ g ] uniquness {a} {b} {f} {g} eq = extensionality lemma-ext2 where lemma-ext2 : ( ∀( x : List a ) -> (morph ( solution a b f)) x ≡ (morph g) x ) -- (morph ( solution a b f)) [] ≡ (morph g) [] ) lemma-ext2 [] = let open ≡-Reasoning in begin (morph ( solution a b f)) [] ≡⟨ identity ( solution a b f) ⟩ ε b ≡⟨ sym ( identity g ) ⟩ (morph g) [] ∎ lemma-ext2 (x :: xs) = let open ≡-Reasoning in begin (morph ( solution a b f)) ( x :: xs ) ≡⟨ homo ( solution a b f) {x :: []} {xs} ⟩ _∙_ b ((morph ( solution a b f)) ( x :: []) ) ((morph ( solution a b f)) xs ) ≡⟨ ≡-cong ( \ k -> (_∙_ b ((morph ( solution a b f)) ( x :: []) ) k )) (lemma-ext2 xs ) ⟩ _∙_ b ((morph ( solution a b f)) ( x :: []) ) ((morph g) ( xs )) ≡⟨ ≡-cong ( \k -> ( _∙_ b ( k x ) ((morph g) ( xs )) )) ( begin ( \x -> (morph ( solution a b f)) ( x :: [] ) ) ≡⟨ extensionality {a} lemma-ext3 ⟩ ( \x -> (morph g) ( x :: [] ) ) ∎ ) ⟩ _∙_ b ((morph g) ( x :: [] )) ((morph g) ( xs )) ≡⟨ sym ( homo g ) ⟩ (morph g) ( x :: xs ) ∎ where lemma-ext3 : ∀( x : a ) -> (morph ( solution a b f)) (x :: []) ≡ (morph g) ( x :: [] ) lemma-ext3 x = let open ≡-Reasoning in begin (morph ( solution a b f)) (x :: []) ≡⟨ ( proj₂ ( IsMonoid.identity ( isMonoid b) )(f x) ) ⟩ f x ≡⟨ sym ( ≡-cong (\f -> f x ) eq ) ⟩ (morph g) ( x :: [] ) ∎ open NTrans -- fm-ε b = Φ fm-ε : NTrans B B ( ( FunctorF A B FreeMonoidUniveralMapping) ○ U) identityFunctor fm-ε = nat-ε A B {U} {Generator} {eta} FreeMonoidUniveralMapping -- TMap fm-ε open Adjunction -- A = Sets {c} -- B = Monoids -- U underline funcotr -- F generator = x :: [] -- Eta x :: [] -- Epsiron morph = Φ adj = UMAdjunction A B U Generator eta FreeMonoidUniveralMapping