open import Category -- https://github.com/konn/category-agda open import Level open import Category.Sets module freyd2 where open import HomReasoning open import cat-utility open import Relation.Binary.Core open import Function ---------- -- -- a : Obj A -- U : A → Sets -- U ⋍ Hom (a,-) -- ---- -- C is locally small i.e. Hom C i j is a set c₁ -- record Small { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where field hom→ : {i j : Obj C } → Hom C i j → I hom← : {i j : Obj C } → ( f : I ) → Hom C i j hom-iso : {i j : Obj C } → { f : Hom C i j } → hom← ( hom→ f ) ≡ f open Small postulate ≈-≡ : { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } {a b : Obj A } { x y : Hom A a b } → (x≈y : A [ x ≈ y ]) → x ≡ y import Relation.Binary.PropositionalEquality -- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g → ( λ x → f x ≡ λ x → g x ) postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ ---- -- -- Hom ( a, - ) is Object mapping in co Yoneda Functor -- ---- open NTrans open Functor open Limit open IsLimit open import Category.Cat HomA : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) (a : Obj A) → Functor A (Sets {c₂}) HomA {c₁} {c₂} {ℓ} A a = record { FObj = λ b → Hom A a b ; FMap = λ {x} {y} (f : Hom A x y ) → λ ( g : Hom A a x ) → A [ f o g ] -- f : Hom A x y → Hom Sets (Hom A a x ) (Hom A a y) ; isFunctor = record { identity = λ {b} → extensionality A ( λ x → lemma-y-obj1 {b} x ) ; distr = λ {a} {b} {c} {f} {g} → extensionality A ( λ x → lemma-y-obj2 a b c f g x ) ; ≈-cong = λ eq → extensionality A ( λ x → lemma-y-obj3 x eq ) } } where lemma-y-obj1 : {b : Obj A } → (x : Hom A a b) → A [ id1 A b o x ] ≡ x lemma-y-obj1 {b} x = let open ≈-Reasoning A in ≈-≡ {_} {_} {_} {A} idL lemma-y-obj2 : (a₁ b c : Obj A) (f : Hom A a₁ b) (g : Hom A b c ) → (x : Hom A a a₁ )→ A [ A [ g o f ] o x ] ≡ (Sets [ _[_o_] A g o _[_o_] A f ]) x lemma-y-obj2 a₁ b c f g x = let open ≈-Reasoning A in ≈-≡ {_} {_} {_} {A} ( begin A [ A [ g o f ] o x ] ≈↑⟨ assoc ⟩ A [ g o A [ f o x ] ] ≈⟨⟩ ( λ x → A [ g o x ] ) ( ( λ x → A [ f o x ] ) x ) ∎ ) lemma-y-obj3 : {b c : Obj A} {f g : Hom A b c } → (x : Hom A a b ) → A [ f ≈ g ] → A [ f o x ] ≡ A [ g o x ] lemma-y-obj3 {_} {_} {f} {g} x eq = let open ≈-Reasoning A in ≈-≡ {_} {_} {_} {A} ( begin A [ f o x ] ≈⟨ resp refl-hom eq ⟩ A [ g o x ] ∎ ) -- Representable U ≈ Hom(A,-) record Representable { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( U : Functor A (Sets {c₂}) ) (a : Obj A) : Set (suc ℓ ⊔ (suc (suc c₂) ⊔ suc c₁ )) where field -- FObj U x : A → Set -- FMap U f = Set → Set (locally small) -- λ b → Hom (a,b) : A → Set -- λ f → Hom (a,-) = λ b → Hom a b repr→ : NTrans A (Sets {c₂}) U (HomA A a ) repr← : NTrans A (Sets {c₂}) (HomA A a) U reprId→ : {x : Obj A} → Sets [ Sets [ TMap repr→ x o TMap repr← x ] ≈ id1 (Sets {c₂}) (FObj (HomA A a) x )] reprId← : {x : Obj A} → Sets [ Sets [ TMap repr← x o TMap repr→ x ] ≈ id1 (Sets {c₂}) (FObj U x)] open Representable open import freyd _↓_ : { c₁ c₂ ℓ : Level} { c₁' c₂' ℓ' : Level} { A : Category c₁ c₂ ℓ } { B : Category c₁' c₂' ℓ' } → ( F G : Functor A B ) → Category (c₂' ⊔ c₁) (ℓ' ⊔ c₂) ℓ _↓_ { c₁} {c₂} {ℓ} {c₁'} {c₂'} {ℓ'} { A } { B } F G = CommaCategory where open import Comma1 F G open import freyd open SmallFullSubcategory open Complete open PreInitial open HasInitialObject open import Comma1 open CommaObj open LimitPreserve -- Representable Functor U preserve limit , so K{*}↓U is complete UpreserveLimit : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) (comp : Complete A A) (U : Functor A (Sets) ) (a : Obj A ) (R : Representable A U a ) → LimitPreserve A I Sets U UpreserveLimit A I comp U a R = record { preserve = λ Γ lim → record { limit = λ a t → {!!} ; t0f=t = λ {a t i} → ? ; limit-uniqueness = λ {a} {t} {f} t0f=t → {!!} } } -- K{*}↓U has preinitial full subcategory then U is representable -- K{*}↓U is complete, so it has initial object UisRepresentable : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (comp : Complete A A) (U : Functor A (Sets {c₂}) ) (a : Obj Sets ) (x : Obj ( K (Sets) A a ↓ U) ) ( init : HasInitialObject {c₁} {c₂} {ℓ} ( K (Sets) A a ↓ U ) x ) → Representable A U (obj x) UisRepresentable A comp U a x init = record { repr→ = record { TMap = {!!} ; isNTrans = record { commute = {!!} } } ; repr← = record { TMap = {!!} ; isNTrans = record { commute = {!!} } } ; reprId→ = λ {y} → ? ; reprId← = λ {y} → ? } -- K{*}↓U has preinitial full subcategory if U is representable -- if U is representable, K{*}↓U has initial Object ( so it has preinitial full subcategory ) KUhasInitialObj : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (comp : Complete A A) (U : Functor A (Sets) ) (a : Obj A ) (R : Representable A U a ) → HasInitialObject {c₁} {c₂} {ℓ} ( K (Sets) A (FObj U a) ↓ U ) ( record { obj = a ; hom = id1 Sets (FObj U a) } ) KUhasInitialObj A comp U a R = record { initial = λ b → {!!} ; uniqueness = λ b f → {!!} }