# HG changeset patch # User Shinji KONO # Date 1498958246 -32400 # Node ID 0d6cab67eadcab2d7be864f06191173d41ec8d02 # Parent 4cf8f982dc5b01a36888696d0ef8e49ea3bd0964 add more lemma diff -r 4cf8f982dc5b -r 0d6cab67eadc freyd2.agda --- a/freyd2.agda Sun Jul 02 02:18:57 2017 +0900 +++ b/freyd2.agda Sun Jul 02 10:17:26 2017 +0900 @@ -296,9 +296,17 @@ tacomm0 : (a : Obj Sets) ( t : NTrans I Sets (K Sets I a) (U ○ Γ) ) (x : a) {y : Obj I} {z : Obj I} {f : Hom I y z} → Sets [ Sets [ FMap (U ○ Γ) f o TMap t y ] ≈ Sets [ TMap t z o FMap ( K Sets I a ) f ] ] tacomm0 a t x {y} {z} {f} = IsNTrans.commute ( isNTrans t ) {y} {z} {f} - sfcomm : Sets [ Sets [ FMap U ( arrow (FMap (SFSF SFS) (fArrow A U (FMap Γ f) (TMap t y x)))) o hom (preinitialObj PI) ] - ≈ Sets [ hom (FObj (SFSF SFS) (ob A U (FObj Γ z) (TMap t z x)) o FMap ( K Sets A * ) ( arrow (FMap (SFSF SFS) (fArrow A U (FMap Γ f) (TMap t y x)))) ] - sfcomm = ? + sfcomm : (a : Obj Sets) ( t : NTrans I Sets (K Sets I a) (U ○ Γ) ) (x : a) {y : Obj I} {z : Obj I} {f : Hom I y z} + → Sets [ Sets [ FMap U ( arrow (FMap (SFSF SFS) (fArrow A U (FMap Γ f) (TMap t y x)))) + o hom (FObj (SFSF SFS) (ob A U (FObj Γ y) (TMap t y x))) ] + ≈ Sets [ hom (FObj (SFSF SFS) (ob A U (FObj Γ z) (FMap U (FMap Γ f) (TMap t y x)))) o + FMap ( K Sets A * ) ( arrow (FMap (SFSF SFS) (fArrow A U (FMap Γ f) (TMap t y x)))) ] ] + sfcomm a t x {y} {z} {f} = comm (FMap (SFSF SFS) ( fArrow A U (FMap Γ f) (TMap t y x )) ) + commacomm : (a : Obj Sets) ( t : NTrans I Sets (K Sets I a) (U ○ Γ) ) (x : a) {y : Obj I} {z : Obj I} {f : Hom I y z} + → ( K (Sets) A * ↓ U) [ ( K (Sets) A * ↓ U) [ FMap (SFSF SFS) ( fArrow A U (FMap Γ f) (TMap t y x )) + o preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ y) (TMap t y x))} ] + ≈ preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ z) (FMap U (FMap Γ f) (TMap t y x))) } ] + commacomm = {!!} tacomm : (a : Obj Sets) ( t : NTrans I Sets (K Sets I a) (U ○ Γ) ) (x : a) {y : Obj I} {z : Obj I} {f : Hom I y z} → A [ A [ FMap Γ f o arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ y) (TMap t y x))})) ] ≈ A [ arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ z) (TMap t z x))} )) @@ -318,6 +326,8 @@ arrow ( SFSFMap← SFS (( K (Sets) A * ↓ U) [ FMap (SFSF SFS) ( fArrow A U (FMap Γ f) (TMap t y x )) o preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ y) (TMap t y x))} ] ) ) ≈⟨ {!!} ⟩ + arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ z) (FMap U (FMap Γ f) (TMap t y x)))} )) + ≈⟨ {!!} ⟩ arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ z) (TMap t z x))} )) ≈↑⟨ idR ⟩ arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ z) (TMap t z x))} ))