# HG changeset patch # User Shinji KONO # Date 1375315485 -32400 # Node ID 17e69b05bc5e4fc6ee9d871cc04864e54d0b96b2 # Parent 2032c438b6a6239643a5a6a77f95cc0c32893984 U^T and F^T problem written diff -r 2032c438b6a6 -r 17e69b05bc5e em-category.agda --- a/em-category.agda Thu Aug 01 02:50:28 2013 +0900 +++ b/em-category.agda Thu Aug 01 09:04:45 2013 +0900 @@ -102,11 +102,25 @@ ∎ _∙_ : {a b c : EMObj } -> EMHom b c -> EMHom a b -> EMHom a c -_∙_ {a} {b} {c} g f = record { homomorphism = Lemma-EM2 a b c g f } +_∙_ {a} {b} {c} g f = record { EMap = A [ EMap g o EMap f ] ; homomorphism = Lemma-EM2 a b c g f } _≗_ : {a : EMObj } {b : EMObj } (f g : EMHom a b ) -> Set ℓ _≗_ f g = A [ EMap f ≈ EMap g ] +-- +-- cannot use as identityL = EMidL +-- +EMidL : {C D : EMObj} -> {f : EMHom C D} → (EM-id ∙ f) ≗ f +EMidL {C} {D} {f} = let open ≈-Reasoning (A) in idL {obj D} +EMidR : {C D : EMObj} -> {f : EMHom C D} → (f ∙ EM-id) ≗ f +EMidR {C} {_} {_} = let open ≈-Reasoning (A) in idR {obj C} +EMo-resp : {a b c : EMObj} -> {f g : EMHom a b } → {h i : EMHom b c } → + f ≗ g → h ≗ i → (h ∙ f) ≗ (i ∙ g) +EMo-resp {a} {b} {c} {f} {g} {h} {i} = ( IsCategory.o-resp-≈ (Category.isCategory A) ) +EMassoc : {a b c d : EMObj} -> {f : EMHom c d } → {g : EMHom b c } → {h : EMHom a b } → + (f ∙ (g ∙ h)) ≗ ((f ∙ g) ∙ h) +EMassoc {_} {_} {_} {_} {f} {g} {h} = ( IsCategory.associative (Category.isCategory A) ) + isEilenberg-MooreCategory : IsCategory EMObj EMHom _≗_ _∙_ EM-id isEilenberg-MooreCategory = record { isEquivalence = isEquivalence ; identityL = IsCategory.identityL (Category.isCategory A) @@ -123,20 +137,6 @@ ; sym = sym ; trans = trans-hom } --- --- cannot use as identityL = EMidL --- -EMidL : {C D : EMObj} -> {f : EMHom C D} → (EM-id ∙ f) ≗ f -EMidL {C} {D} {f} = let open ≈-Reasoning (A) in idL {obj D} -EMidR : {C D : EMObj} -> {f : EMHom C D} → (f ∙ EM-id) ≗ f -EMidR {C} {_} {_} = let open ≈-Reasoning (A) in idR {obj C} -EMo-resp : {a b c : EMObj} -> {f g : EMHom a b } → {h i : EMHom b c } → - f ≗ g → h ≗ i → (h ∙ f) ≗ (i ∙ g) -EMo-resp {a} {b} {c} {f} {g} {h} {i} = ( IsCategory.o-resp-≈ (Category.isCategory A) ) -EMassoc : {a b c d : EMObj} -> {f : EMHom c d } → {g : EMHom b c } → {h : EMHom a b } → - (f ∙ (g ∙ h)) ≗ ((f ∙ g) ∙ h) -EMassoc {_} {_} {_} {_} {f} {g} {h} = ( IsCategory.associative (Category.isCategory A) ) - Eilenberg-MooreCategory : Category (c₁ ⊔ c₂ ⊔ ℓ) (c₁ ⊔ c₂ ⊔ ℓ) ℓ Eilenberg-MooreCategory = record { Obj = EMObj @@ -147,52 +147,66 @@ ; isCategory = isEilenberg-MooreCategory } --- -- --- -- Resolution --- -- T = U_T U_F --- -- nat-ε --- -- nat-η --- -- --- -- --- -- --- -- U_T : Functor Eilenberg-MooreCategory A --- -- U_T = record { --- -- FObj = FObj T --- -- ; FMap = ufmap --- -- ; isFunctor = record --- -- { ≈-cong = ≈-cong --- -- ; identity = identity --- -- ; distr = distr1 --- -- } --- -- } where --- -- identity : {a : EMObj} → A [ ufmap (EM-id a) ≈ id1 A (FObj T a) ] --- -- identity {a} = let open ≈-Reasoning (A) in --- -- begin --- -- TMap μ (a) o FMap T (TMap η a) --- -- ≈⟨ IsMonad.unity2 (isMonad M) ⟩ --- -- id1 A (FObj T a) --- -- ∎ --- -- ≈-cong : {a b : EMObj} {f g : EMHom a b} → A [ EMap f ≈ EMap g ] → A [ ufmap f ≈ ufmap g ] --- -- ≈-cong {a} {b} {f} {g} f≈g = let open ≈-Reasoning (A) in --- -- begin --- -- TMap μ (b) o FMap T (EMap f) --- -- ≈⟨ cdr (fcong T f≈g) ⟩ --- -- TMap μ (b) o FMap T (EMap g) --- -- ∎ --- -- distr1 : {a b c : EMObj} {f : EMHom a b} {g : EMHom b c} → A [ ufmap (g ∙ f) ≈ (A [ ufmap g o ufmap f ] )] --- -- distr1 {a} {b} {c} {f} {g} = let open ≈-Reasoning (A) in --- -- begin --- -- ufmap (g ∙ f) --- -- ≈⟨⟩ --- -- ufmap g o ufmap f --- -- ∎ --- -- --- -- open MResolution --- -- --- -- Resolution_T : MResolution A Eilenberg-MooreCategory T U_T F_T {nat-η} {nat-ε} {nat-μ} Adj_T --- -- Resolution_T = record { --- -- T=UF = Lemma11; --- -- μ=UεF = Lemma12 --- -- } --- -- + +-- Resolution +-- T = U^T U^F +-- ε^t +-- η^T + +U^T : Functor Eilenberg-MooreCategory A +U^T = record { + FObj = \a -> obj a + ; FMap = \f -> EMap f + ; isFunctor = record + { ≈-cong = \eq -> eq + ; identity = refl-hom + ; distr = refl-hom + } + } where open ≈-Reasoning (A) + +Lemma-EM4 : (a : Obj A ) (phi : Hom A (FObj T a) a) -> A [ A [ phi o TMap η a ] ≈ id1 A a ] +Lemma-EM4 = ? + +Lemma-EM5 : (a : Obj A ) (phi : Hom A (FObj T a) a) -> A [ A [ phi o TMap μ a ] ≈ A [ phi o FMap T phi ] ] +Lemma-EM5 = ? + +ftobj : Obj A -> EMObj +ftobj = \x -> record { a = FObj T x ; phi = TMap μ x; + isAlgebra = record { + identity = Lemma-EM4 (FObj T x) ( TMap μ x); + eval = Lemma-EM5 (FObj T x) ( TMap μ x) + } } + +Lemma-EM6 : (a b : EMObj ) -> (f : Hom A (obj a) (obj b)) -> + A [ A [ (φ b) o FMap T f ] ≈ A [ f o (φ a) ] ] +Lemma-EM6 = ? + +ftmap : {a b : Obj A} -> (Hom A a b) -> EMHom (ftobj a) (ftobj b) +ftmap {a} {b} f = record { EMap = FMap T f; homomorphism = Lemma-EM6 (ftobj a) (ftobj b) (FMap T f) } + +F^T : Functor A Eilenberg-MooreCategory +F^T = record { + FObj = ftobj + ; FMap = ftmap + ; isFunctor = record { + ≈-cong = ≈-cong + ; identity = identity + ; distr = distr + } + } where + ≈-cong : {a b : Obj A} {f g : Hom A a b} → A [ f ≈ g ] → (ftmap f) ≗ (ftmap g) + ≈-cong = ? + identity : {a : Obj A} → ftmap (id1 A a) ≗ EM-id {ftobj a} + identity = ? + distr : {a b c : Obj A} {f : Hom A a b} {g : Hom A b c} → ftmap (A [ g o f ]) ≗ ( ftmap g ∙ ftmap f ) + distr = ? + +--open MResolution +-- +--Resolution_T : MResolution A Eilenberg-MooreCategory T U_T F_T {nat-η} {nat-ε} {nat-μ} Adj_T +--Resolution_T = record { +-- T=UF = Lemma11; +-- μ=UεF = Lemma12 +-- } + -- -- end