# HG changeset patch # User Shinji KONO # Date 1615017047 -32400 # Node ID 194d4ad4efd9306e376c5f567d31d55191464171 # Parent c1576827404e3c101b28a7bde85957caafa8e412 ... diff -r c1576827404e -r 194d4ad4efd9 src/CCCGraph.agda --- a/src/CCCGraph.agda Sat Mar 06 13:35:45 2021 +0900 +++ b/src/CCCGraph.agda Sat Mar 06 16:50:47 2021 +0900 @@ -96,17 +96,16 @@ *-cong refl = refl -tooos : {c : Level } → Topos (Sets {c}) sets -tooos = record { - Ω = {!!} - ; ⊤ = {!!} - ; Ker = {!!} - ; char = {!!} - ; isTopos = record { - - } - } - +-- tooos : {c : Level } → Topos (Sets {c}) sets +-- tooos = record { +-- Ω = {!!} +-- ; ⊤ = {!!} +-- ; Ker = {!!} +-- ; char = {!!} +-- ; isTopos = record { +-- +-- } +-- } open import graph @@ -447,7 +446,7 @@ identityL = λ {a b f} → IsCategory.identityL (Category.isCategory B) ; identityR = λ {a b f} → IsCategory.identityR (Category.isCategory B) ; o-resp-≈ = λ {a b c f g h i} → IsCategory.o-resp-≈ (Category.isCategory B); - associative = λ {a} {b} {c} {f} {g} {h} → ? -- IsCategory.associative (Category.isCategory B) {{!!}} {{!!}} {{!!}} {{!!}} {{!!}} {{!!}} + associative = λ {a} {b} {c} {f} {g} {h} → {!!} -- IsCategory.associative (Category.isCategory B) {{!!}} {{!!}} {{!!}} {{!!}} {{!!}} {{!!}} } } ; ≡←≈ = λ eq → eq ; @@ -476,7 +475,7 @@ -- -- -- η : Hom Grph a (FObj UX (F a)) - -- f : edge g x y -----------------------------------> m21 (record {vertex = fobj (atom x) ; edge = fmap h }) : Graph + -- f : edge g x y -----------------------------------> (record {vertex = fobj (atom x) ; edge = fmap h }) : Graph -- Graph g x ----------------------> y : vertex g ↑ -- arrow f : Hom (PL g) (atom x) (atom y) | -- PL g atom x ------------------> atom y : Obj (PL g) | UX : Functor Sets Graph @@ -488,30 +487,28 @@ F : Obj (Grph {c₁} {c₁}) → Obj (Cart {c₁} {c₁} {c₁}) F g = FCat where open fcat g η : (a : Obj (Grph {c₁} {c₁}) ) → Hom Grph a (FObj UX (F a)) - η a = record { vmap = λ y → {!!} ; emap = λ f → em f } where + η a = record { vmap = λ y → vm y ; emap = λ f → em f } where fo : Graph {c₁ } {c₁} fo = uobj {c₁} (F a) - vm : (y : vertex a ) → vertex {!!} - vm y = {!!} -- vmap (m21 fo) (atom y) - em : { x y : vertex a } (f : edge a x y ) → edge (FObj UX (F a)) {!!} {!!} - em {x} {y} f = {!!} -- emap (m21 fo) (fmap a (iv (arrow f) (id _))) - pl : {c₁ c₁ : Level} → (g : Graph {c₁} {c₁} ) → Category _ _ _ - pl g = PL g + vm : (y : vertex a ) → vertex (FObj UX (F a)) + vm y = atom y + em : { x y : vertex a } (f : edge a x y ) → edge (FObj UX (F a)) (vm x) (vm y) + em {x} {y} f = fmap a (iv (arrow f) (id _)) cobj : {g : Obj (Grph {c₁} {c₁} ) } {c : Obj Cart} → Hom Grph g (FObj UX c) → Objs g → Obj (cat c) - cobj {g} {c} f (atom x) = vmap {!!} (vmap f x) + cobj {g} {c} f (atom x) = vmap f x cobj {g} {c} f ⊤ = CCC.1 (ccc c) cobj {g} {c} f (x ∧ y) = CCC._∧_ (ccc c) (cobj {g} {c} f x) (cobj {g} {c} f y) cobj {g} {c} f (b <= a) = CCC._<=_ (ccc c) (cobj {g} {c} f b) (cobj {g} {c} f a) c-map : {g : Obj (Grph )} {c : Obj Cart} {A B : Objs g} → (f : Hom Grph g (FObj UX c) ) → (fobj g A → fobj g B) → Hom (cat c) (cobj {g} {c} f A) (cobj {g} {c} f B) - c-map {g} {c} {a} {atom b} f y with fcat.fcat-pl {c₁} {c₁} g {a} {atom b} y - c-map {g} {c} {atom b} {atom b} f y | id (atom b) = id1 (cat c) _ - c-map {g} {c} {a} {atom b} f y | iv {_} {_} {d} (arrow x) t = {!!} - -- (cat c) [ emap (m12 (uobj {c₁} {c₁} c)) ( emap f x) o c-map {g} {c} {a} {d} f (fmap g t) ] - c-map {g} {c} {a} {atom b} f y | iv {_} {_} {d} π t = {!!} --(cat c) [ CCC.π (ccc c) o c-map {g} {c} {a} {d} f (fmap g t)] - c-map {g} {c} {a} {atom b} f y | iv {_} {_} {d} π' t = {!!} -- (cat c) [ CCC.π' (ccc c) o c-map {g} {c} {a} {d} f (fmap g t) ] - c-map {g} {c} {a} {atom b} f y | iv {_} {_} {d} ε t = {!!} -- (cat c) [ CCC.ε (ccc c) o c-map {g} {c} {a} {d} f (fmap g t) ] - -- with emap (m12 (uobj {c₁} {c₁} c)) ( emap f {!!} ) + --- Hom (cat c) (cobj f a) (cobj f (atom b)) + ------ g : Obj Grph + ------ c : Obj Cart + ------ a : Objs g + ------ b : V g + ------ f : Hom Grph g (uobj c) + ------ y : fobj g a → (y₁ : vertex g) → C g y₁ b + c-map {g} {c} {a} {atom b} f y = ? c-map {g} {c} {a} {⊤} f x = CCC.○ (ccc c) (cobj f a) c-map {g} {c} {a} {x ∧ y} f z = CCC.<_,_> (ccc c) (c-map f (λ k → proj₁ (z k))) (c-map f (λ k → proj₂ (z k))) c-map {g} {c} {d} {b <= a} f x = CCC._* (ccc c) ( c-map f (λ k → x (proj₁ k) (proj₂ k)))