# HG changeset patch # User Shinji KONO # Date 1377676849 -32400 # Node ID 346e8eb35ec323a01a5db6dd9e8bf1d4ddc79d75 # Parent b58453d90db6ffdb9dfb0e2b39fa2fed916bd31a contravariant continue ... diff -r b58453d90db6 -r 346e8eb35ec3 yoneda.agda --- a/yoneda.agda Wed Aug 28 13:26:01 2013 +0900 +++ b/yoneda.agda Wed Aug 28 17:00:49 2013 +0900 @@ -20,8 +20,8 @@ postulate extensionality : Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ -CF : (a : Obj A) → Functor A Sets -CF a = record { +CF' : (a : Obj A) → Functor A Sets +CF' a = record { FObj = λ b → Hom A a b ; FMap = λ {b c : Obj A } → λ ( f : Hom A b c ) → λ (g : Hom A a b ) → A [ f o g ] ; isFunctor = record { @@ -49,5 +49,17 @@ cong1 eq = extensionality ( λ x → ( ≈-≡ ( (IsCategory.o-resp-≈ ( Category.isCategory A )) ( IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory A ))) eq ))) +open import Function - +CF : (a : Obj A) → Functor (Category.op A) Sets +CF a = record { + FObj = λ b → Hom (Category.op A) a b + ; FMap = λ {b c : Obj A } → λ ( f : Hom A c b ) → λ (g : Hom A b a ) → (Category.op A) [ f o g ] + ; isFunctor = record { + identity = \{b} → extensionality ( λ x → lemma-CF1 {b} x ) + ; distr = λ {a} {b} {c} {f} {g} → {!!} + ; ≈-cong = {!!} + } + } where + lemma-CF1 : {b : Obj A } → (x : Hom A b a) → (Category.op A) [ id1 A b o x ] ≡ x + lemma-CF1 {b} x = let open ≈-Reasoning (Category.op A) in ≈-≡ idL