# HG changeset patch # User Shinji KONO # Date 1588299034 -32400 # Node ID 3e164b00155f659fda029db0704ce918612e5d46 # Parent 2f0ffd5733a80c1d1a64338a4a170a92b5d4cbef ... diff -r 2f0ffd5733a8 -r 3e164b00155f CCCGraph.agda --- a/CCCGraph.agda Thu Apr 30 17:42:12 2020 +0900 +++ b/CCCGraph.agda Fri May 01 11:10:34 2020 +0900 @@ -203,16 +203,49 @@ o-resp-≈ {_} {_} {_} {f} {g} {iv f₁ h} {iv f₁ i} f=g (piv h=i) = piv ( o-resp-≈ f=g h=i) o-resp-≈ {_} {_} {_} {f} {g} {iv (arrow x) h} {iv (arrow y) i} f=g (aiv x=y h=i) = aiv x=y (o-resp-≈ f=g h=i) + -------- -- -- Functor from Positive Logic to Sets -- + data SObj : Set (c₁ ⊔ c₂ ⊔ ℓ) + data SArrow : (a b : SObj) → Set (c₁ ⊔ c₂ ⊔ ℓ) + data SObj where + satom : (vertex G) → SObj + stop : SObj + spair : SObj → SObj → SObj + sfunc : SObj → SObj → SObj + data SArrow where + seq : {a b : vertex G} → graphtocat.Chain G a b → SArrow (satom a) (satom b) + top : {a : SObj } → SArrow a stop + pair : {a b c : SObj } → SArrow a b → SArrow a c → SArrow a (spair b c ) + func : {a b c : SObj } → SArrow b c → SArrow a (sfunc b c) + + sobj : Objs → SObj + sobj (atom x) = satom x + sobj ⊤ = stop + sobj (x ∧ y) = spair (sobj x) (sobj y) + sobj (b <= a) = sfunc (sobj a) (sobj b) + + smap : { a b : Objs } → Hom PL a b → SArrow (sobj a) (sobj b) + samap : { a b c : Objs } → Arrow b c → SArrow (sobj a) (sobj b) → SArrow (sobj a) (sobj c) + samap {atom a} (arrow x) (seq y) = seq ( graphtocat.next x y ) + samap π (pair f g) = f + samap π' (pair f g) = g + samap ε (pair (func f) g) = {!!} + samap (f *) x = ? + smap (id (atom x)) = seq (graphtocat.id x) + smap (id ⊤) = top + smap (id (a ∧ b)) = {!!} -- pair (smap (id a)) (smap (id b)) + smap (id (b <= a)) = {!!} + smap (○ a) = top {sobj a} + smap < f , g > = pair ( smap f ) (smap g ) + smap (iv f g ) = samap f ( smap g ) + -- open import Category.Sets -- postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ - open import Data.List - C = graphtocat.Chain G tr : {a b : vertex G} → edge G a b → ((y : vertex G) → C y a) → (y : vertex G) → C y b