# HG changeset patch # User Shinji KONO # Date 1585962380 -32400 # Node ID 40c6e806bda00a29227d53885b36946dce462ec0 # Parent 3b7b8e5100471443fda8ac66f5663dd365ef86fc ... diff -r 3b7b8e510047 -r 40c6e806bda0 CCCGraph1.agda --- a/CCCGraph1.agda Sat Apr 04 09:41:38 2020 +0900 +++ b/CCCGraph1.agda Sat Apr 04 10:06:20 2020 +0900 @@ -41,6 +41,7 @@ iv ε < g , g₁ > ・ h = iv ε < g ・ h , g₁ ・ h > iv (f *) < g , g₁ > ・ h = iv (f *) < g ・ h , g₁ ・ h > iv f ( (○ a)) ・ g = iv f ( ○ _ ) + iv x y ・ id a = iv x y iv f (iv f₁ g) ・ h = iv f ( (iv f₁ g) ・ h ) ○ a ・ g = ○ _ f ・ id b = f @@ -52,7 +53,13 @@ identityR≡ {a} {.a} {id a} = refl identityR≡ {a} {⊥} {○ a} = refl identityR≡ {a} {_} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) identityR≡ identityR≡ - identityR≡ {a} {b} {iv x y} = {!!} + identityR≡ {a} {b} {iv x (id a)} = refl + identityR≡ {a} {b} {iv x (○ a)} = refl + identityR≡ {a} {_} {iv π < f , g >} = {!!} + identityR≡ {a} {b} {iv π' < f , g >} = {!!} + identityR≡ {a} {b} {iv ε < f , g >} = {!!} + identityR≡ {a} {.(_ <= _)} {iv (x *) < y , y₁ >} = {!!} + identityR≡ {a} {b} {iv x (iv f y)} = refl identityR : {A B : Objs} {f : Arrows A B} → (f ・ id A) == f identityR {a} {b} {f} = cong ( λ k → k ・ id a ) ( identityR≡ {_} {_} {f} ) @@ -72,11 +79,37 @@ ∎ where open ≡-Reasoning assoc-iv x (id a) g = refl assoc-iv x (○ a) g = refl - assoc-iv π < f , f₁ > g = {!!} - assoc-iv π' < f , f₁ > g = {!!} + assoc-iv π < f , f₁ > g = begin + iv π < f , f₁ > ・ g + ≡⟨⟩ + f ・ g + ≡⟨ sym identityR≡ ⟩ + (f ・ g) ・ id _ + ≡⟨⟩ + iv π < f ・ g , f₁ ・ g > ・ id _ + ≡⟨ identityR≡ ⟩ + iv π < f ・ g , f₁ ・ g > + ≡⟨⟩ + iv π (< f , f₁ > ・ g) + ∎ where open ≡-Reasoning + assoc-iv π' < f , f₁ > g = begin + iv π' < f , f₁ > ・ g + ≡⟨⟩ + f₁ ・ g + ≡⟨ sym identityR≡ ⟩ + (f₁ ・ g) ・ id _ + ≡⟨⟩ + iv π' < f ・ g , f₁ ・ g > ・ id _ + ≡⟨ identityR≡ ⟩ + iv π' < f ・ g , f₁ ・ g > + ≡⟨⟩ + iv π' (< f , f₁ > ・ g) + ∎ where open ≡-Reasoning assoc-iv ε < f , f₁ > g = refl assoc-iv (x *) < f , f₁ > g = refl - assoc-iv x (iv f f₁) g = {!!} + assoc-iv x (iv f f₁) (○ a) = refl + assoc-iv x (iv f f₁) < g , g₁ > = refl + assoc-iv x (iv f f₁) (iv f₂ g) = refl PL : Category (c₁ ⊔ c₂) (c₁ ⊔ c₂) (c₁ ⊔ c₂) PL = record { @@ -107,11 +140,13 @@ (iv x f ・ (g ・ h)) ・ id a ≡⟨ cong ( λ k → k ・ id a) (assoc-iv x f ( g ・ h )) ⟩ iv x (f ・ (g ・ h)) ・ id a - ≡⟨ cong ( λ k → iv x k ・ id a) (≡←== (associative f g _ ) ) ⟩ + ≡⟨ cong ( λ k → iv x k ・ id a) (≡←== (associative f g h ) ) ⟩ + {!!} + ≡⟨ {!!} ⟩ iv x ((f ・ g ) ・ h) ・ id a - ≡⟨ sym (cong ( λ k → k ・ id a) (assoc-iv x (f ・ g ) _)) ⟩ + ≡⟨ sym (cong ( λ k → k ・ id a) (assoc-iv x (f ・ g ) h)) ⟩ ( iv x (f ・ g ) ・ h) ・ id a - ≡⟨ sym (cong ( λ k → (k ・ h ) ・ id a) (assoc-iv x f _)) ⟩ + ≡⟨ sym (cong ( λ k → (k ・ h ) ・ id a) (assoc-iv x f g)) ⟩ ((iv x f ・ g) ・ h) ・ id a ∎ where open ≡-Reasoning -- {!!} ( cong ( λ k → iv x k ) ( ≡←== (associative f g h ) ) )