# HG changeset patch # User Shinji KONO # Date 1616886718 -32400 # Node ID 447bbacacf644ce5144aca6d0b49f58235a07acf # Parent 227e1fe321ea2038d5e8ea7d68ca76431ef087d5 fix comment diff -r 227e1fe321ea -r 447bbacacf64 src/CCCSets.agda --- a/src/CCCSets.agda Sat Mar 27 22:52:43 2021 +0900 +++ b/src/CCCSets.agda Sun Mar 28 08:11:58 2021 +0900 @@ -113,8 +113,14 @@ case1 : a → a ∨ b case2 : b → a ∨ b -data char {c : Level} {a b : Set c} (m : Hom Sets b a) : a → Set c where - isChar : (x : b ) → char m (m x) +-- +-- m : b → a determins a subset of a as an image +-- b and m-image in a has one to one correspondence with an equalizer (x : b) → (y : a) ≡ m x. +-- so tchar m mono and ker (tchar m mono) is Iso. +-- Finding (x : b) from (y : a) is non constructive. Assuming LEM of image. +-- +data image {c : Level} {a b : Set c} (m : Hom Sets b a) : a → Set c where + isImage : (x : b ) → image m (m x) topos : {c : Level } → ({ c : Level} → (b : Set c) → b ∨ (¬ b)) → Topos (Sets {c}) sets topos {c} lem = record { @@ -128,14 +134,17 @@ } } where -- +-- In Sets, equalizers exist as -- data sequ {c : Level} (A B : Set c) ( f g : A → B ) : Set c where -- elem : (x : A ) → (eq : f x ≡ g x) → sequ A B f g +-- m have to be isomorphic to ker (char m). +-- -- i ○ b -- ker (char m) ----→ b -----------→ 1 -- | ←---- | | --- | j |m | ⊤ char m : a → Ω = {1,⊥} --- | e ↓ char m ↓ if y : a ≡ m (∃ x : b) → 1 --- +-------------→ a -----------→ Ω else ⊥ +-- | j |m | ⊤ char m : a → Ω = {true,false} +-- | e ↓ char m ↓ if y : a ≡ m (∃ x : b) → true ( data char ) +-- +-------------→ a -----------→ Ω else false -- h -- tker : {a : Obj Sets} (h : Hom Sets a Bool) → Equalizer Sets h (Sets [ (λ _ → true ) o CCC.○ sets a ]) @@ -144,29 +153,29 @@ ; equalizer = λ e → equ e ; isEqualizer = SetsIsEqualizer _ _ _ _ } tchar : {a b : Obj Sets} (m : Hom Sets b a) → (mono : Mono Sets m ) → a → Bool {c} - tchar {a} {b} m mono y with lem (char m y ) + tchar {a} {b} m mono y with lem (image m y ) ... | case1 t = true ... | case2 f = false isol : {a b : Obj (Sets {c}) } (m : Hom Sets b a) → (mono : Mono Sets m ) → IsoL Sets m (λ (e : sequ a Bool (tchar m mono) (λ _ → true )) → equ e ) isol {a} {b} m mono = record { iso-L = record { ≅→ = b→s ; ≅← = b←s ; iso→ = {!!} ; iso← = {!!} } ; iso≈L = {!!} } where b→s : Hom Sets b (sequ a Bool (tchar m mono) (λ _ → true)) - b→s x with lem (char m (m x) ) + b→s x with lem (image m (m x) ) ... | case1 x₁ = bs1 x₁ refl where - bs1 : {y : a } → char m y → y ≡ m x → sequ a Bool (λ y → tchar m mono y) (λ _ → true) - bs1 (isChar x) eq = elem (m x) {!!} - ... | case2 n = ⊥-elim (n (isChar x)) + bs1 : {y : a } → image m y → y ≡ m x → sequ a Bool (λ y → tchar m mono y) (λ _ → true) + bs1 (isImage x) eq = elem (m x) {!!} + ... | case2 n = ⊥-elim (n (isImage x)) b←s : Hom Sets (sequ a Bool (tchar m mono) (λ _ → true)) b - b←s (elem y eq) with lem (char m y) - ... | case1 (isChar x) = x + b←s (elem y eq) with lem (image m y) + ... | case1 (isImage x) = x ... | case2 t = ⊥-elim ( ¬f≡t eq ) imequ : {a b : Obj Sets} (m : Hom Sets b a) (mono : Mono Sets m) → IsEqualizer Sets m (tchar m mono) (Sets [ (λ _ → true ) o CCC.○ sets a ]) imequ {a} {b} m mono = equalizerIso _ _ (tker (tchar m mono)) m (isol m mono) uniq : {a : Obj (Sets {c})} {b : Obj Sets} (h : Hom Sets a Bool) (m : Hom Sets b a) (mono : Mono Sets m) (y : a) → tchar (Equalizer.equalizer (tker h)) (record { isMono = λ f g → monic (tker h) }) y ≡ h y - uniq {a} {b} h m mono y with h y | lem (char (Equalizer.equalizer (tker h)) y ) | inspect (tchar (Equalizer.equalizer (tker h)) (record { isMono = λ f g → monic (tker h) })) y + uniq {a} {b} h m mono y with h y | lem (image (Equalizer.equalizer (tker h)) y ) | inspect (tchar (Equalizer.equalizer (tker h)) (record { isMono = λ f g → monic (tker h) })) y ... | true | case1 x | record { eq = eq1 } = eq1 ... | true | case2 x | record { eq = eq1 } = {!!} - ... | false | case1 x | record { eq = eq1 } = {!!} + ... | false | case1 (isImage (elem x eq)) | record { eq = eq1 } = {!!} ... | false | case2 x | record { eq = eq1 } = eq1