# HG changeset patch # User Shinji KONO # Date 1586748146 -32400 # Node ID 4a66f48ffee520812e2580cbdeec89208ecac7c7 # Parent ad0732c51d38957d565e5c43a7ae5d6a2f4c1eab ... funcn does not work diff -r ad0732c51d38 -r 4a66f48ffee5 CCCGraph.agda --- a/CCCGraph.agda Mon Apr 13 08:56:52 2020 +0900 +++ b/CCCGraph.agda Mon Apr 13 12:22:26 2020 +0900 @@ -165,12 +165,59 @@ -- open import Category.Sets -- postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ + data SL : (t : Objs ) → Set (c₁ ⊔ c₂) where + term : SL ⊤ + value : (x : vertex G) → SL (atom x) + _::_ : {a b : vertex G} → (f : edge G a b ) → (prev : SL (atom a)) → SL (atom b) + _,_ : {a b : Objs } → (f : SL a ) → (g : SL b) → SL (a ∧ b) + func0 : {a b : vertex G } → {c : Objs } → edge G a b → SL ( c <= atom b ) → SL (c <= atom a ) + func1 : {a b c : Objs } → SL (b <= a) → SL ( c <= a ) → SL (( b ∧ c) <= a ) + func2 : {a b c : Objs } → SL ( ( c <= b ) <= a) → SL ( c <= ( a ∧ b) ) + func3 : {a : Objs } → SL ( ⊤ <= a ) + func4 : {a : Objs } → SL a → SL ( a <= ⊤ ) + func5 : {a b c : Objs } → SL a → SL ( c <= b ) → SL ( c <= (b <= a) ) + func6 : {a b c : Objs } → SL ( b <= a ) → SL ( c <= b ) → SL ( (c <= b )<= a ) + func7 : {a : Objs } → SL ( a <= a ) + + fobj' : ( a : Objs ) → Set (c₁ ⊔ c₂) + fobj' a = SL a + + fmap' : { a b : Objs } → Hom PL a b → fobj' a → fobj' b + amap' : { a b : Objs } → Arrow a b → fobj' a → fobj' b + amap' (arrow x) f = {!!} + amap' π (f , f₁) = {!!} + amap' π' (f , f₁) = {!!} + amap' ε (f , f₁) = {!!} + amap' (x *) term = {!!} + amap' {atom v} {b <= a} (x *) (value v) = {!!} where + lemma : SL a → SL b + lemma = λ y → fmap' x ( (value v) , y ) + amap' (x *) (f :: f₁) = {!!} + amap' (x *) (f , f₁) = {!!} + amap' (x *) (func0 x₁ f) = {!!} + amap' (x *) (func1 f f₁) = {!!} + amap' (x *) (func2 f) = {!!} + amap' (x *) func3 = {!!} + amap' (x *) (func4 f) = {!!} + amap' (x *) (func5 f f₁) = {!!} + amap' (x *) (func6 f f₁) = {!!} + amap' {c} {b <= a} (x *) func7 = {!!} where + lemma : SL a → SL b + lemma = λ y → fmap' x ( func7 , y ) + fmap' = {!!} + record SM : Set (suc (c₁ ⊔ c₂)) where field sobj : vertex G → Set (c₁ ⊔ c₂) smap : { a b : vertex G } → edge G a b → sobj a → sobj b open SM + SSS : SM + SSS = record { + sobj = λ x → {!!} + ;smap = λ {a} {b} f x → {!!} + } + fobj : {G : SM} ( a : Objs ) → Set (c₁ ⊔ c₂) fobj {G} (atom x) = sobj G x fobj ⊤ = One