# HG changeset patch # User Shinji KONO # Date 1588328814 -32400 # Node ID 549933e6797848ee8ab452d9819630b155e697aa # Parent 91b8b7fb64ebd69cc994b92a422f056e18781cef add smallness in CCC to Graph diff -r 91b8b7fb64eb -r 549933e67978 CCCGraph.agda --- a/CCCGraph.agda Fri May 01 17:49:45 2020 +0900 +++ b/CCCGraph.agda Fri May 01 19:26:54 2020 +0900 @@ -209,35 +209,6 @@ -- Functor from Positive Logic to Sets -- - data SArrow : (a b : Objs) → Set (c₁ ⊔ c₂ ⊔ ℓ) where - seq : {a b : vertex G} → graphtocat.Chain G a b → SArrow (atom a) (atom b) - top : {a : Objs } → SArrow a ⊤ - pair : {a b c : Objs } → SArrow a b → SArrow a c → SArrow a (b ∧ c ) - func : {a b c : Objs } → SArrow b c → SArrow a ( c <= b ) - sid : {a : Objs } → SArrow a a - - smap : { a b : Objs } → Hom PL a b → SArrow (a) (b) - samap : { a b c : Objs } → Arrow b c → SArrow (a) (b) → SArrow (a) (c) - samap {atom a} (arrow x) sid = {!!} - samap {atom a} (arrow x) (seq y) = seq ( graphtocat.next x y ) - samap π (pair f g) = f - samap π' (pair f g) = g - samap ε (pair (func f) g) = {!!} - samap (f *) x = func {!!} where - f1 : {!!} - f1 = smap f - samap ε (pair y y₁) = {!!} - samap π sid = {!!} - samap π' sid = {!!} - samap ε sid = {!!} - smap (id (atom x)) = seq (graphtocat.id x) - smap (id ⊤) = top - smap (id (a ∧ b)) = sid -- pair (smap (id a)) (smap (id b)) - smap (id (b <= a)) = sid - smap (○ a) = top {a} - smap < f , g > = pair ( smap f ) (smap g ) - smap (iv f g ) = samap f ( smap g ) - -- open import Category.Sets -- postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ @@ -264,23 +235,18 @@ fmap < f , g > x = ( fmap f x , fmap g x ) fmap (iv x f) a = amap x ( fmap f a ) - _==_ : { a : Objs } → (f g : fobj a ) → Set ℓ - _==_ {atom x} f g = {!!} - _==_ {⊤} OneObj OneObj = OneObj ≡ OneObj - _==_ {a ∧ b} (f , g) (h , i) = ( f == h ) /\ ( g == i ) - _==_ {b <= a} f g = {!!} -- λ (x : fobj a) → ? -- _≑_ f g {x} - - _≑_ : { a b : Objs } → (f g : fobj a → fobj b ) → {x : fobj a} → Set ℓ - _≑_ {a} {b} f g {x} = f x == g x -- CS is a map from Positive logic to Sets -- Sets is CCC, so we have a cartesian closed category generated by a graph -- as a sub category of Sets - CS : Functor PL (Sets {c₁ ⊔ c₂ ⊔ ℓ}) - FObj CS a = fobj a - FMap CS {a} {b} f = fmap {a} {b} f - isFunctor CS = isf where + smallGraph : (G : Graph {c₁} { c₂} {ℓ} ) → Set (c₁ ⊔ c₂ ⊔ ℓ) + smallGraph G = {b c : vertex G } → {f h : edge G b c } → _≅_ G f h → f ≡ h + + CS : smallGraph G → Functor PL (Sets {c₁ ⊔ c₂ ⊔ ℓ}) + FObj (CS sg) a = fobj a + FMap (CS sg) {a} {b} f = fmap {a} {b} f + isFunctor ( CS sg) = isf where _+_ = Category._o_ PL ++idR = IsCategory.identityR ( Category.isCategory PL ) distr : {a b c : Obj PL} { f : Hom PL a b } { g : Hom PL b c } → (z : fobj a ) → fmap (g + f) z ≡ fmap g (fmap f z) @@ -293,15 +259,22 @@ adistr eq x = cong ( λ k → amap x k ) eq isf : IsFunctor PL Sets fobj fmap IsFunctor.identity isf = extensionality Sets ( λ x → refl ) - IsFunctor.≈-cong isf = {!!} + IsFunctor.≈-cong isf f=g = extensionality Sets ( λ x → lemma _ _ f=g ) where + lemma : {a b : Obj PL} → {x : fobj a } → (f g : Hom PL a b ) → PL [ f ≈ g ] → fmap f x ≡ fmap g x + lemma f f prefl = refl + lemma {a} {⊤} {x} f g p⊤ with fmap f x | fmap g x + lemma {a} {⊤} {x} f g p⊤ | OneObj | OneObj = refl + lemma (< f , g >) (< h , i >) (

f=h g=i) = cong₂ (λ j k → ( j , k ) ) (lemma f h f=h) (lemma g i g=i) + lemma {_} {_} {x} (iv f g) (iv f i) (piv g=i) = cong ( λ k → amap f k ) (lemma g i g=i) + lemma (iv (arrow x) f) (iv (arrow y) g) (aiv x=y f=g) = cong₂ ( λ j k → amap (arrow j) k ) (sg x=y ) (lemma f g f=g) IsFunctor.distr isf {a} {b} {c} {g} {f} = extensionality Sets ( λ z → distr {a} {b} {c} {g} {f} z ) open import subcat - CSC = FCat PL (Sets {c₁ ⊔ c₂ ⊔ ℓ}) CS + CSC = λ (gs : smallGraph G) → FCat PL (Sets {c₁ ⊔ c₂ ⊔ ℓ}) (CS gs) - cc1 : CCC CSC -- SCS is CCC - cc1 = record { + cc1 : (gs : smallGraph G) → CCC (CSC gs) -- SCS is CCC + cc1 gs = record { 1 = ⊤ ; ○ = λ a x → OneObj ; _∧_ = λ x y → x ∧ y ; @@ -322,13 +295,13 @@ *-cong = *-cong } } where - e20 : {a : Obj CSC} {f : Hom CSC a ⊤} (x : fobj a ) → f x ≡ OneObj + e20 : {a : Obj (CSC gs) } {f : Hom (CSC gs) a ⊤} (x : fobj a ) → f x ≡ OneObj e20 {a} {f} x with f x e20 x | OneObj = refl π-cong : {a b c : Obj Sets} {f f' : Hom Sets c a} {g g' : Hom Sets c b} → Sets [ f ≈ f' ] → Sets [ g ≈ g' ] → Sets [ (λ x → f x , g x) ≈ (λ x → f' x , g' x) ] π-cong refl refl = refl - *-cong : {a b c : Obj CSC } {f f' : Hom CSC (a ∧ b) c} → + *-cong : {a b c : Obj (CSC gs) } {f f' : Hom (CSC gs) (a ∧ b) c} → Sets [ f ≈ f' ] → Sets [ (λ x y → f (x , y)) ≈ (λ x y → f' (x , y)) ] *-cong refl = refl @@ -502,7 +475,7 @@ } } where csc : Graph → Obj Cart - csc g = record { cat = CSC ; ccc = cc1 } where + csc g = record { cat = CSC {!!} ; ccc = cc1 {!!} } where open ccc-from-graph g econg1 : (G : Graph {c₁} {c₁} {c₁}) → { a b : vertex G} → ( f g : edge G a b ) → _≅_ G f g → _≅_ (FObj UX (csc G)) {atom a} {atom b} (λ x y → next f (x y)) (λ x y → next g (x y))