# HG changeset patch # User Shinji KONO # Date 1674569415 -32400 # Node ID 57683a6e567445c31735bb4346f28f0158bc9cd3 # Parent e50368495cf1e380f10c6533a588873377ba21ee ... diff -r e50368495cf1 -r 57683a6e5674 src/group.agda --- a/src/group.agda Tue Jan 24 20:25:02 2023 +0900 +++ b/src/group.agda Tue Jan 24 23:10:15 2023 +0900 @@ -22,6 +22,7 @@ open import Algebra.Core open import Algebra.Structures open import Data.Product +open import Data.Unit record ≡-Group : Set (suc c) where infixr 9 _∙_ @@ -181,24 +182,43 @@ φ : (G : Obj Groups ) (K : NormalGroup G ) → Homomorph G (G / K ) φ = ? -GC : (G : Obj Groups ) → Category c c (suc c) -GC G = ? - -U : (G H : Obj Groups ) → (f : Homomorph G H ) → Functor (GC G) (GC H) -U = ? -fundamentalTheorem : (G H : Obj Groups ) → (K : NormalGroup G) → (f : Homomorph G H ) → UniversalMapping (GC G) (GC (G / K)) (U G H f ) -fundamentalTheorem G H K f = record { F = morph (φ G K) ; η = eta ; _* = ? ; isUniversalMapping - = record { universalMapping = λ {a} {b} {g} → is-solution a b g ; uniquness = ? }} where - eta : (a : Obj (GC G)) → Hom (GC G) a (Functor.FObj (U G H f) ( (morph (φ G K) a)) ) - eta = ? - solution : {a : Obj (GC G)} {b : Obj (GC (G / K))} → Hom (GC G) a (Functor.FObj (U G H f) b) → Hom (GC (G / K)) (morph (φ G K) a) b - solution = ? - is-solution : (a : Obj (GC G)) (b : Obj (GC (G / K))) - (g : Hom (GC G) a (Functor.FObj (U G H f) b)) → - (GC G) [ (GC G) [ Functor.FMap (U G H f) (solution {a} {b} g) o eta a ] ≈ g ] - is-solution = ? +GC : (G : Obj Groups ) → Category c c (suc c) +GC G = record { Obj = Lift c ⊤ ; Hom = λ _ _ → ≡-Group.Carrier G ; _o_ = ≡-Group._∙_ G } + +U : (G H : Obj Groups ) → (f : Homomorph G H ) → Functor (GC G) (GC H) +U G H f = record { FObj = λ _ → lift tt ; FMap = λ an → morph f ? } + +F : (G H : Obj Groups ) → (f : Homomorph G H ) → (K : NormalGroup G) → Functor (GC H) (GC (G / K)) +F G H f = ? --record { FObj = λ _ → lift tt ; FMap = λ x → morph f x } + +-- f f ε +-- G --→ H G --→ H (a) +-- | / | / +-- φ | / h φ | /h ↑ +-- ↓ / ↓ / +-- G/K G/K + +fundamentalTheorem : (G H : Obj Groups ) → (K : NormalGroup G) → (f : Homomorph G H ) + → ( kerf⊆K : (x : ≡-Group.Carrier G) → aN K x → morph f x ≡ ≡-Group.ε H ) + → UniversalMapping (GC G) (GC H) ? +fundamentalTheorem G H K f kerf⊆K = record { U = λ _ → lift tt ; ε = λ _ → ? ; _* = ? ; isUniversalMapping + = record { universalMapping = λ {a} {b} {g} → ? ; uniquness = ? }} + +fundamentalTheorem' : (G H : Obj Groups ) → (K : NormalGroup G) → (f : Homomorph G H ) + → ( kerf⊆K : (x : ≡-Group.Carrier G) → aN K x → morph f x ≡ ≡-Group.ε H ) + → coUniversalMapping (GC H) (GC (G / K)) (F G H f K ) +fundamentalTheorem' G H K f kerf⊆K = record { U = λ _ → lift tt ; ε = λ _ → ? ; _* = ? ; iscoUniversalMapping + = record { couniversalMapping = λ {a} {b} {g} → ? ; uniquness = ? }} where + m : Homomorph G G + m = NormalGroup.normal K + φ⁻¹ : ≡-Group.Carrier (G / K) → ≡-Group.Carrier G + φ⁻¹ = ? + --- f ( φ⁻¹ z ) ) ≡ g + solution : {b : Obj (GC H)} {a : Obj (GC (G / K))} → Hom (GC H) (lift tt) b → Hom (GC G) a (lift tt) + solution g = ? + is-solution : (a : Obj (GC G)) (b : Obj (GC (G / K))) (g : Hom (GC H) (lift tt) a ) → GC H [ GC H [ ≡-Group.ε H o morph f ? ] ≈ g ] + is-solution a b g = ? -