# HG changeset patch # User Shinji KONO # Date 1374565752 -32400 # Node ID 5d2a33bb12910ded068598dcd9c02325369e5195 # Parent b4530a8079181bbc1725c25a84ed209c3bc03eb4 cleanup diff -r b4530a807918 -r 5d2a33bb1291 universal-mapping.agda --- a/universal-mapping.agda Tue Jul 23 16:36:31 2013 +0900 +++ b/universal-mapping.agda Tue Jul 23 16:49:12 2013 +0900 @@ -63,12 +63,12 @@ open UniversalMapping Lemma1 : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') - ( U : Functor B A ) - ( F : Functor A B ) - ( η : NTrans A A identityFunctor ( U ○ F ) ) - ( ε : NTrans B B ( F ○ U ) identityFunctor ) -> + { U : Functor B A } + { F : Functor A B } + { η : NTrans A A identityFunctor ( U ○ F ) } + { ε : NTrans B B ( F ○ U ) identityFunctor } -> Adjunction A B U F η ε -> UniversalMapping A B U (FObj F) (TMap η) -Lemma1 A B U F η ε adj = record { +Lemma1 A B {U} {F} {η} {ε} adj = record { _* = solution ; isUniversalMapping = record { universalMapping = universalMapping; @@ -136,12 +136,12 @@ -- F is an functor -- -FunctorF : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') - ( U : Functor B A ) - ( F : Obj A -> Obj B ) - ( η : (a : Obj A) -> Hom A a ( FObj U (F a) ) ) -> +FunctorF : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') + { U : Functor B A } + { F : Obj A -> Obj B } + { η : (a : Obj A) -> Hom A a ( FObj U (F a) ) } -> UniversalMapping A B U F η -> Functor A B -FunctorF A B U F η um = record { +FunctorF A B {U} {F} {η} um = record { FObj = F; FMap = myFMap ; isFunctor = myIsFunctor @@ -209,16 +209,16 @@ -- naturality of η -- nat-η : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') - ( U : Functor B A ) - ( F : Obj A -> Obj B ) - ( η : (a : Obj A) -> Hom A a ( FObj U (F a) ) ) -> + { U : Functor B A } + { F : Obj A -> Obj B } + { η : (a : Obj A) -> Hom A a ( FObj U (F a) ) } -> (um : UniversalMapping A B U F η ) -> - NTrans A A identityFunctor ( U ○ FunctorF A B U F η um ) -nat-η A B U F η um = record { + NTrans A A identityFunctor ( U ○ FunctorF A B um ) +nat-η A B {U} {F} {η} um = record { TMap = η ; isNTrans = myIsNTrans } where F' : Functor A B - F' = FunctorF A B U F η um + F' = FunctorF A B um naturality : {a b : Obj A} {f : Hom A a b} → A [ A [ (FMap U (FMap F' f)) o ( η a ) ] ≈ A [ (η b ) o f ] ] naturality {a} {b} {f} = let open ≈-Reasoning (A) in @@ -233,16 +233,16 @@ myIsNTrans = record { naturality = naturality } nat-ε : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') - ( U : Functor B A ) - ( F : Obj A -> Obj B ) - ( η : (a : Obj A) -> Hom A a ( FObj U (F a) ) ) -> + { U : Functor B A } + { F : Obj A -> Obj B } + { η : (a : Obj A) -> Hom A a ( FObj U (F a) ) } -> (um : UniversalMapping A B U F η ) -> - NTrans B B ( FunctorF A B U F η um ○ U) identityFunctor -nat-ε A B U F η um = record { + NTrans B B ( FunctorF A B um ○ U) identityFunctor +nat-ε A B {U} {F} {η} um = record { TMap = ε ; isNTrans = myIsNTrans } where F' : Functor A B - F' = FunctorF A B U F η um + F' = FunctorF A B um ε : ( b : Obj B ) -> Hom B ( FObj F' ( FObj U b) ) b ε b = (_* um) ( id1 A (FObj U b)) lemma-nat1 : (a b : Obj B) (f : Hom B a b ) -> @@ -308,7 +308,7 @@ ( F' : Obj A -> Obj B ) ( η' : (a : Obj A) -> Hom A a ( FObj U (F' a) ) ) -> (um : UniversalMapping A B U F' η' ) -> - Adjunction A B U (FunctorF A B U F' η' um) (nat-η A B U F' η' um) (nat-ε A B U F' η' um) + Adjunction A B U (FunctorF A B um) (nat-η A B um) (nat-ε A B um) UMAdjunction A B U F' η' um = record { isAdjunction = record { adjoint1 = adjoint1 ; @@ -316,14 +316,14 @@ } } where F : Functor A B - F = FunctorF A B U F' η' um + F = FunctorF A B um η : NTrans A A identityFunctor ( U ○ F ) - η = nat-η A B U F' η' um + η = nat-η A B um ε : NTrans B B ( F ○ U ) identityFunctor - ε = nat-ε A B U F' η' um + ε = nat-ε A B um adjoint1 : { b : Obj B } -> A [ A [ ( FMap U ( TMap ε b )) o ( TMap η ( FObj U b )) ] ≈ id1 A (FObj U b) ] - adjoint1 = ? + adjoint1 = {!!} adjoint2 : {a : Obj A} -> B [ B [ ( TMap ε ( FObj F a )) o ( FMap F ( TMap η a )) ] ≈ id1 B (FObj F a) ] - adjoint2 = ? + adjoint2 = {!!}