# HG changeset patch # User Shinji KONO # Date 1488288783 -32400 # Node ID 7ed0045e4adf63b01ff404e53c43e2ae8d1eae60 # Parent 3ee32e4df4c7a0bcf57e10e7beb57f0f46de7ccf negnat diff -r 3ee32e4df4c7 -r 7ed0045e4adf negnat.agda --- a/negnat.agda Tue Feb 28 12:38:23 2017 +0900 +++ b/negnat.agda Tue Feb 28 22:33:03 2017 +0900 @@ -1,5 +1,3 @@ - - module negnat where @@ -21,6 +19,11 @@ ℕ-elim P s z zero = z ℕ-elim P s z (suc n) = s (ℕ-elim P s z n) +-- data ⊥ : Set where + +-- record ⊤ : Set where +-- constructor tt + -- peano : ∀ n → suc n ≡ zero → ⊥ Nope : (m n : ℕ) → Set @@ -49,8 +52,9 @@ Nope0 : ℕ → Set Nope0 = ℕ-elim (λ _ → Set) (λ _ → ⊤) ⊥ --- Nope1 zero = ⊥ --- Nope1 (suc _) = ⊤ +Nope1 : ℕ -> Set +Nope1 zero = ⊥ +Nope1 (suc _) = ⊤ bad : Fin 0 → ⊥ bad = Fin-elim (λ n _ → Nope0 n) (λ _ → _) _ @@ -68,10 +72,9 @@ div (suc (suc n)) p = suc (div n p) div (suc zero) () -proof : (suc (suc zero) + (suc (suc (suc zero)))) ≡ (suc (suc (suc (suc (suc zero))))) +proof : 2 + 3 ≡ suc (suc (suc (suc (suc zero)))) proof = refl --- data ⊥ : Set where -- -- ¬_ : Set → Set -- ¬ A = A → ⊥