# HG changeset patch # User Shinji KONO # Date 1621181940 -32400 # Node ID 9f967d9312f143f117e4b6f184312961bb09ea99 # Parent ed657b63315d84095f7c8ca81cc1e3bb47a77f77 give up. assuming x ∙ ○ b is Polynominal diff -r ed657b63315d -r 9f967d9312f1 src/Polynominal.agda --- a/src/Polynominal.agda Sun May 16 23:38:00 2021 +0900 +++ b/src/Polynominal.agda Mon May 17 01:19:00 2021 +0900 @@ -82,6 +82,7 @@ phi : φ x {b} {c} f -- construction of f nf : (fp : φ x {b} {c} f) → xnef x fp + -- since we have A[x] now, we can proceed the proof on p.64 in some possible future -- @@ -234,12 +235,10 @@ f' ∙ < π , π' > ≈⟨ cdr (IsCCC.π-id isCCC) ⟩ f' ∙ id1 A _ ≈⟨ idR ⟩ f' ∎ ) where - -- (phi : φ x f) → xnef x phi - xff : ((fp : φ x f) → xnef x fp) → (g : Hom A b a) → (gp : φ x g) → xnef x gp - xff = {!!} - xf : (fp : φ x (x ∙ ○ b)) → xnef x fp - xf = {!!} - u2 : k x {x ∙ ○ b} (i _) ≈ k x {x} ii ∙ < π , k x {○ b} (i _) > + -- x ∙ ○ b is clearly Polynominal, but our xnef is too strong to prove it + postulate + xf : {a b : Obj A} → { x : Hom A 1 a } → (fp : φ x (x ∙ ○ b)) → xnef x fp + u2 : k x {x ∙ ○ b} (i _) ≈ k x {x} ii ∙ < π , k x {○ b} (i _) > -- (x ∙ (○ b)) ∙ π' ≈ π ∙ < π , (○ b) ∙ π' > u2 = ki x (x ∙ ○ b) (iv ii (i _)) xf -- functional completeness ε form