# HG changeset patch # User Shinji KONO # Date 1491786893 -32400 # Node ID ba9c6dbbe6cbeb6207282c53774678df9594dfcc # Parent e8ab4fcfe033c369124c60b74a5252e2458b57db on going ... diff -r e8ab4fcfe033 -r ba9c6dbbe6cb SetsCompleteness.agda --- a/SetsCompleteness.agda Mon Apr 10 03:13:28 2017 +0900 +++ b/SetsCompleteness.agda Mon Apr 10 10:14:53 2017 +0900 @@ -127,8 +127,8 @@ SetsIsEqualizer : { c₂ : Level} → (a b : Obj (Sets {c₂}) ) (f g : Hom (Sets {c₂}) a b) → IsEqualizer Sets (λ e → equ e )f g SetsIsEqualizer {c₂} a b f g = record { - fe=ge = fe=ge - ; k = k + fe=ge = fe=ge { c₂ } {a} {b} {f} {g} + ; k = λ {d} h eq → k { c₂ } {a} {b} {f} {g} {d} h eq ; ek=h = λ {d} {h} {eq} → ek=h {c₂} {a} {b} {f} {g} {d} {h} {eq} ; uniqueness = uniqueness } where @@ -224,7 +224,7 @@ ; isLimit = record { limit = limit1 ; t0f=t = λ {a t i } → t0f=t {a} {t} {i} - ; limit-uniqueness = λ {a t i } → {!!} -- limit-uniqueness {a} {t} {i} + ; limit-uniqueness = λ {a t i } → limit-uniqueness {a} {t} {i} } } where a0 : Obj Sets @@ -234,15 +234,16 @@ comm2 : { a : Obj Sets } {x : a } {i j : Obj C} (t : NTrans C Sets (K Sets C a) Γ) (f : I → I ) → ΓMap s Γ f (TMap t i x) ≡ TMap t j x comm2 {a} {x} t f = ≡cong ( λ f → f x ) ( IsNTrans.commute ( isNTrans t ) ) + comm3 : { a : Obj Sets } {x : a } {i j : Obj C} (t : NTrans C Sets (K Sets C a) Γ) (f : I → I ) + → Sets [ Sets [ (λ x₁ → ΓMap s Γ f (snmap x₁ i)) o setprod t ] ≈ Sets [ (λ x₁ → snmap x₁ j) o setprod t ] ] + comm3 {a} {x} t f = {!!} limit1 : (a : Obj Sets) → NTrans C Sets (K Sets C a) Γ → Hom Sets a (snequ (ΓObj s Γ) (ΓMap s Γ)) limit1 a t = λ ( x : a ) → record { - snequ1 = λ {i} {j} f → k ( setprod t ) {!!} x + snequ1 = λ {i} {j} f → k ( setprod t ) (comm3 {a} {x} t f ) x } t0f=t : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ ) i o limit1 a t ] ≈ TMap t i ] t0f=t {a} {t} {i} = extensionality Sets ( λ x → begin ( Sets [ TMap (Cone C I s Γ ) i o limit1 a t ]) x - -- ≡⟨⟩ - -- snmap ( record { snmap = λ i → ( TMap t i ) x ; sncommute = λ {i j} f → comm2 {a} {x} {i} {j} t f } ) i ≡⟨⟩ TMap t i x ∎ ) where @@ -250,4 +251,39 @@ open ≡-Reasoning limit-uniqueness : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {f : Hom Sets a (snequ (ΓObj s Γ) (ΓMap s Γ) )} → ({i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ ) i o f ] ≈ TMap t i ]) → Sets [ limit1 a t ≈ f ] - limit-uniqueness {a} {t} {f} cif=t = {!!} + limit-uniqueness {a} {t} {f} cif=t = extensionality Sets ( λ x → begin + limit1 a t x + ≡⟨⟩ + record { snequ1 = λ {i} {j} f' → k ( setprod t ) (comm3 {a} {x} t f' ) x } + ≡⟨ ≡cong ( λ ff → record { snequ1 = λ {i} {j} f' → ff i j f' }) ( + extensionality Sets ( λ i → extensionality Sets ( λ j → extensionality Sets ( λ f' → k-cong {i} {j} f' x + ))) + ) ⟩ + record { snequ1 = λ {i} {j} f' → snequ1 (f x) f' } + ≡⟨⟩ + f x + ∎ ) where + open import Relation.Binary.PropositionalEquality + open ≡-Reasoning + k-cong : { i j : Obj C } ( f' : I → I ) ( x : a ) → k ( setprod t ) (comm3 {a} {x} t f' ) x ≡ snequ1 (f x) f' + k-cong {i} {j} f' x = begin + k ( setprod t ) (comm3 {a} {x} t f' ) x + ≡⟨ elm-cong (k ( setprod t ) (comm3 {a} {x} t f' ) x ) ( snequ1 (f x) f' ) ( begin + equ (k (setprod t) (comm3 t f') x) + ≡⟨⟩ + record { snmap = λ i' → TMap t i' x } + ≡⟨ ≡cong ( λ s → record { snmap = λ i' → s i' } ) ( extensionality Sets ( λ i' → ( sym ( begin + snmap ( equ ( snequ1 (f x) f')) i' + ≡⟨ ? ⟩ + snmap ( equ ( snequ1 (f x) (λ x → x ))) i' + ≡⟨ ≡cong ( λ f → f x ) cif=t ⟩ + TMap t i' x + ∎ )))) ⟩ + record { snmap = λ i' → snmap (equ (snequ1 (f x) f')) i' } + ≡⟨⟩ + equ (snequ1 (f x) f') + ∎ + ) ⟩ + snequ1 (f x) f' + ∎ +