# HG changeset patch # User Shinji KONO # Date 1490565325 -32400 # Node ID d6739779b4acf86dd9c757dc4291dcb8ffb0bb5d # Parent 4b097a010fd90ae5eb51a74014d4415d2dde13c0 on going .. diff -r 4b097a010fd9 -r d6739779b4ac SetsCompleteness.agda --- a/SetsCompleteness.agda Sun Mar 26 23:17:44 2017 +0900 +++ b/SetsCompleteness.agda Mon Mar 27 06:55:25 2017 +0900 @@ -16,7 +16,9 @@ ≡cong = Relation.Binary.PropositionalEquality.cong - +lemma1 : { c₂ : Level } {a b : Obj (Sets { c₂})} {f g : Hom Sets a b} → + Sets [ f ≈ g ] → (x : a ) → f x ≡ g x +lemma1 refl x = refl record Σ {a} (A : Set a) (B : Set a) : Set a where constructor _,_ @@ -127,9 +129,6 @@ injection f = ∀ x y → f x ≡ f y → x ≡ y elm-cong : (x y : sequ a b f g) → equ x ≡ equ y → x ≡ y elm-cong ( elem x eq ) (elem .x eq' ) refl = ≡cong ( λ ee → elem x ee ) ( irr eq eq' ) - lemma1 : { c₂ : Level } {a b : Obj (Sets { c₂})} {f g : Hom Sets a b} → - Sets [ f ≈ g ] → (x : a ) → f x ≡ g x - lemma1 refl x = refl lemma5 : {d : Obj Sets} {h : Hom Sets d a} {fh=gh : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} {k' : Hom Sets d (sequ a b f g)} → Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → (x : d ) → equ (k h fh=gh x) ≡ equ (k' x) lemma5 refl x = refl -- somehow this is not equal to lemma1 @@ -179,8 +178,10 @@ ; limit-uniqueness = {!!} } } where - e : (i : Obj Sets) → Hom Sets (FObj (K Sets Sets {!!}) i) (iproduct (Obj Sets) (λ I → ΓObj (Obj Sets))) - e = {!!} + eqa : {i j : Obj Sets} (f : Hom Sets i j) → sequ (Obj Sets) (Obj Sets) {!!} {!!} -- {!!} {!!} (FMap Γ f o proj i) ( proj j ) + eqa f = {!!} + e : (i : Obj Sets) → Hom Sets (FObj (K Sets Sets ( sequ {!!} {!!} {!!} {!!} )) i ) (iproduct (Obj Sets) (λ I → ΓObj (Obj Sets))) + e i = λ x → record { pi1 = λ i → record { obj = sequ ? {!!} {!!} {!!} } } proj : (i : Obj Sets) → ( prod : iproduct (Obj Sets) (λ i → ΓObj (Obj Sets) )) → FObj Γ i proj i prod = record { obj = {!!} } comm1 : {a b : Obj Sets} {f : Hom Sets a b} → Sets [ Sets [ FMap Γ f o (λ lim → {!!} ) ] ≈