# HG changeset patch # User Shinji KONO # Date 1586733040 -32400 # Node ID f52d21eaada4f1b03002d7d9632112fe6be4784b # Parent 07fdaecc17b329481847720d8113ab7d7bf6b9ee SL is not strictly positive diff -r 07fdaecc17b3 -r f52d21eaada4 CCCGraph.agda --- a/CCCGraph.agda Sun Apr 12 18:18:20 2020 +0900 +++ b/CCCGraph.agda Mon Apr 13 08:10:40 2020 +0900 @@ -167,10 +167,10 @@ data SL : (t : Objs ) → Set (c₁ ⊔ c₂) where term : SL ⊤ - type : {x : vertex G} → SL (atom x) + value : (x : vertex G) → SL (atom x) _::_ : {a b : vertex G} → (f : edge G a b ) → (prev : SL (atom a)) → SL (atom b) _,_ : {a b : Objs } → (f : SL a ) → (g : SL b) → SL (a ∧ b) - func : {a b : Objs } → ( f : SL b) → SL (b <= a ) -- tail of f should be a SL a + func : {a b : Objs } → ( f : SL a → SL b) → SL (b <= a ) -- tail of f should be a SL a _+_ : { a b c : Objs } → ( SL b → SL c ) → ( SL a → SL b ) → SL a → SL c _+_ f g x = f ( g x ) @@ -181,13 +181,13 @@ fobj : ( a : Objs ) → Set (c₁ ⊔ c₂) fobj a = SL a + fmap : { a b : Objs } → Hom PL a b → fobj a → fobj b amap : { a b : Objs } → Arrow a b → fobj a → fobj b amap (arrow x) a = x :: a amap π ( x , y ) = x amap π' ( x , y ) = y - amap ε (func f , x ) = append f x - amap (f *) x = func {!!} - fmap : { a b : Objs } → Hom PL a b → fobj a → fobj b + amap ε (func f , x ) = f x + amap (f *) x = func (λ y → fmap f ( x , y ) ) fmap (id a) x = x fmap (○ a) x = term fmap < f , g > x = ( fmap f x , fmap g x ) @@ -204,10 +204,13 @@ _++_ = Category._o_ PL ++idR = IsCategory.identityR ( Category.isCategory PL ) distr : {a b c : Obj PL} { f : Hom PL a b } { g : Hom PL b c } → (z : fobj a ) → fmap (g ++ f) z ≡ fmap g (fmap f z) - distr {a} {b} {c} {f} {g} z = {!!} where - -- adistr : fmap (g ++ f) z ≡ fmap g (fmap f z) → - -- ( x : Arrow d c ) → fmap ( next x (g ++ f) ) z ≡ fmap ( next x g ) (fmap f z ) - -- adistr eq x = cong ( λ k → amap x k ) eq + distr {a} {a₁} {a₁} {f} {id a₁} z = refl + distr {a} {a₁} {⊤} {f} {○ a₁} z = refl + distr {a} {b} {c ∧ d} {f} {< g , g₁ >} z = cong₂ (λ j k → j , k ) (distr {a} {b} {c} {f} {g} z) (distr {a} {b} {d} {f} {g₁} z) + distr {a} {b} {c} {f} {iv {_} {_} {d} x g} z = adistr (distr {a} {b} {d} {f} {g} z) x where + adistr : fmap (g ++ f) z ≡ fmap g (fmap f z) → + ( x : Arrow d c ) → fmap ( iv x (g ++ f) ) z ≡ fmap ( iv x g ) (fmap f z ) + adistr eq x = cong ( λ k → amap x k ) eq isf : IsFunctor PL Sets fobj fmap IsFunctor.identity isf = extensionality Sets ( λ x → refl ) IsFunctor.≈-cong isf refl = refl