Mercurial > hg > Members > kono > Proof > category
changeset 288:04f598e500de
give up ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 24 Sep 2013 11:07:43 +0900 |
parents | a0455048ebb7 |
children | 7dc163c026b7 |
files | pullback.agda |
diffstat | 1 files changed, 11 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/pullback.agda Tue Sep 24 00:47:33 2013 +0900 +++ b/pullback.agda Tue Sep 24 11:07:43 2013 +0900 @@ -351,8 +351,9 @@ ( Γ : Functor I A ) → ( lim p : Obj A ) ( e : Hom A lim p ) ( proj : (i : Obj I ) → Hom A p (FObj Γ i) ) → + ( fproj : { i j : Obj I } { f : Hom I i j } → A [ A [ FMap Γ f o proj i ] ≈ proj j ] ) → NTrans I A (K I lim) Γ -limit-ε prod eqa Γ lim p e proj = record { +limit-ε prod eqa Γ lim p e proj fproj = record { TMap = tmap ; isNTrans = record { commute = commute1 @@ -368,25 +369,13 @@ FMap Γ f o ( proj i o e ) ≈⟨ assoc ⟩ ( FMap Γ f o proj i ) o e - ≈↑⟨ car ( pif=q ( prod p (FObj Γ) proj ) { p } lemma2 {j} ) ⟩ - (proj j o ( product ( prod p (FObj Γ) proj ) ) lemma2 ) o e - ≈⟨ car ( cdr ( ip-cong ( prod p (FObj Γ) proj ) lemma3 )) ⟩ - (proj j o ( product ( prod p (FObj Γ) proj ) ) proj ) o e - ≈⟨ car ( cdr ( ip-cong ( prod p (FObj Γ) proj ) (λ i₁ → sym idR ) )) ⟩ - (proj j o ( product ( prod p (FObj Γ) proj ) ) (λ i₁ → A [ proj i₁ o id1 A p ]) ) o e - ≈⟨ car ( cdr ( ip-uniqueness ( prod p (FObj Γ) proj ))) ⟩ - (proj j o id1 A p ) o e - ≈⟨ car idR ⟩ + ≈⟨ car fproj ⟩ proj j o e ≈↑⟨ idR ⟩ (proj j o e ) o id1 A lim ≈⟨⟩ tmap j o FMap (K I lim) f - ∎ where - lemma2 : (i₁ : Obj I) → Hom A p (FObj Γ i₁) - lemma2 i₁ = {!!} - lemma3 : (i₁ : Obj I) → A [ lemma2 i₁ ≈ proj i₁ ] - lemma3 = {!!} + ∎ limit-from : ( prod : (p : Obj A) ( ai : Obj I → Obj A ) ( pi : (i : Obj I) → Hom A p ( ai i ) ) @@ -395,8 +384,10 @@ ( Γ : Functor I A ) → ( lim p : Obj A ) -- limit to be made ( e : Hom A lim p ) -- existing of equalizer ( proj : (i : Obj I ) → Hom A p (FObj Γ i) ) -- existing of product ( projection actually ) - → Limit I Γ lim ( limit-ε prod eqa Γ lim p e proj ) -limit-from prod eqa Γ lim p e proj = record { + -- fproj should be proved by IProduct, but I cannot + ( fproj : { i j : Obj I } { f : Hom I i j } → A [ A [ FMap Γ f o proj i ] ≈ proj j ] ) + → Limit I Γ lim ( limit-ε prod eqa Γ lim p e proj fproj ) +limit-from prod eqa Γ lim p e proj fproj = record { limit = λ a t → limit1 a t ; t0f=t = λ {a t i } → t0f=t1 {a} {t} {i} ; limit-uniqueness = λ {a} {t} {f} t=f → limit-uniqueness1 {a} {t} {f} t=f @@ -404,9 +395,9 @@ limit1 : (a : Obj A) → NTrans I A (K I a) Γ → Hom A a lim limit1 a t = let open ≈-Reasoning (A) in k (eqa e (id1 A p) (id1 A p )) (product ( prod p (FObj Γ) proj ) (TMap t) ) refl-hom t0f=t1 : {a : Obj A} {t : NTrans I A (K I a) Γ} {i : Obj I} → - A [ A [ TMap (limit-ε prod eqa Γ lim p e proj) i o limit1 a t ] ≈ TMap t i ] + A [ A [ TMap (limit-ε prod eqa Γ lim p e proj fproj ) i o limit1 a t ] ≈ TMap t i ] t0f=t1 {a} {t} {i} = let open ≈-Reasoning (A) in begin - TMap (limit-ε prod eqa Γ lim p e proj) i o limit1 a t + TMap (limit-ε prod eqa Γ lim p e proj fproj ) i o limit1 a t ≈⟨⟩ ( ( proj i ) o e ) o k (eqa e (id1 A p) (id1 A p )) (product ( prod p (FObj Γ) proj ) (TMap t) ) refl-hom ≈↑⟨ assoc ⟩ @@ -417,7 +408,7 @@ TMap t i ∎ limit-uniqueness1 : {a : Obj A} {t : NTrans I A (K I a) Γ} {f : Hom A a lim} - → ({i : Obj I} → A [ A [ TMap (limit-ε prod eqa Γ lim p e proj) i o f ] ≈ TMap t i ]) → + → ({i : Obj I} → A [ A [ TMap (limit-ε prod eqa Γ lim p e proj fproj ) i o f ] ≈ TMap t i ]) → A [ limit1 a t ≈ f ] limit-uniqueness1 {a} {t} {f} lim=t = let open ≈-Reasoning (A) in begin limit1 a t