Mercurial > hg > Members > kono > Proof > category
changeset 4:05087d3aeac0
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 06 Jul 2013 08:50:32 +0900 |
parents | dce706edd66b |
children | 16572013c362 |
files | category.ind nat.agda |
diffstat | 2 files changed, 40 insertions(+), 29 deletions(-) [+] |
line wrap: on
line diff
--- a/category.ind Sat Jul 06 07:27:57 2013 +0900 +++ b/category.ind Sat Jul 06 08:50:32 2013 +0900 @@ -952,7 +952,7 @@ Object of $A$. -Arrow $f: T -> T(A)$. In $f: b -> c, g: c -> d$, +Arrow $f: a -> T(a)$ in $A$. In $A_T$, $f: b -> c, g: c -> d$, $ g * f = μ(d)T(g)f $ @@ -1085,11 +1085,11 @@ $ f: a -> (m,f(a)) $ \begin{eqnarray*} -g * f (b) & = & μ(T(g))f(b) = μ(T(g))(m,f(b)) \\ & = & μ(m,(m',gf(b))) = (mm',gf(b)) \\ -(g * f) * h(a) & = & μT(μ(T(g)f))h(a) = μT(μ)(TT(g))T(f)(m,h(a)) \\ -\mbox{} & = & μT(μ)(TT(g))(m,(m',fh(a))) \\ & = & μT(μ)(m,(m',(m'',gfh(a)))) = (mm'm'',gfh(a)) \\ -g * (f * h)(a) & = & (μ(T(g)))μT(f)h(a) = (μ(T(g)))μT(f)(m,h(a)) \\ -\mbox{} & = & (μ(T(g)))μ(m,(m',fh(a)) \\ & = & μ(T(g))(mm',fh(a)) = (mm'm'',gfh(a)) \\ +g * f (b) & = & μ(d)T(g)f(b) = μ(d)T(g)(m,f(b)) \\ & = & μ(m,(m',gf(b))) = (mm',gf(b)) \\ +(g * f) * h(a) & = & μ(d)T(μ(d)T(g)f)h(a) = μ(d)T(μ(d))(TT(g))T(f)(m,h(a)) \\ +\mbox{} & = & μ(d)T(μ(d))(TT(g))(m,(m',fh(a))) \\ & = & μ(d)T(μ(d)(m,(m',(m'',gfh(a)))) = (mm'm'',gfh(a)) \\ +g * (f * h)(a) & = & (μ(d)(T(g)))μ(c)T(f)h(a) = (μ(d)(T(g)))μ(c)T(f)(m,h(a)) \\ +\mbox{} & = & (μ(d)(T(g)))μ(c)(m,(m',fh(a))) \\ & = & μ(d)T(g)(mm',fh(a)) = (mm'm'',gfh(a)) \\ \end{eqnarray*} @@ -1294,26 +1294,26 @@ -- naturality of $μ$ --begin-comment: - μ_a + μ(a) TT(a) ---------> T(a) | | TT(f)| |T(f) | | - v μ_b v + v μ(b) v TT(b) ---------> T(b) --end-comment: \begin{tikzcd} -TT(a) \arrow{r}{μ_a} \arrow{d}{TT(f)} & T(a) \arrow{d}{T(f)} \\ -TT(b) \arrow{r}{μ_b} & T(b) +TT(a) \arrow{r}{μ(a)} \arrow{d}{TT(f)} & T(a) \arrow{d}{T(f)} \\ +TT(b) \arrow{r}{μ(b)} & T(b) \end{tikzcd} -$ μ_bTT(f)TT(a) = T(f)μ_aTT(a)$ +$ μ(b)TT(f)TT(a) = T(f)μ(a)TT(a)$ -$ μ_bTT(f)TT(a) = μ_b((m,(m',f(a))) = (m*m',f(a))$ +$ μ(b)TT(f)TT(a) = μ(b)((m,(m',f(a))) = (m*m',f(a))$ -$ T(f)μ_a(TT(a)) = T(f)(m*m',a) = (m*m',f(a))$ +$ T(f)μ(a)(TT(a)) = T(f)(m*m',a) = (m*m',f(a))$ --μ○μ @@ -1326,19 +1326,18 @@ $μ_T(a) TTT(a) = μ_T(a) (m,(m',(m'',a))) = (m*m',(m'',a)) $ --begin-comment: - μ_a - TTTT(a) ---------> TTT(a) - | | - TT(μ)| |T(μ) - | | - v μ_b v - TTT(a) ---------> TT(a) + μ(TTT(a)) + TTTT(a) ----------> TTT(a) + | | + TT(μ(T(a))| |T(μ(T(a))) + | | + v μ(TT(a)) v + TTT(a) -----------> TT(a) --end-comment: - \begin{tikzcd} -TTTT(a) \arrow{r}{μ_a} \arrow{d}{TT(μ)} & TTT(a) \arrow{d}{T(μ)} \\ -TTT(a) \arrow{r}{μ_b} & TT(a) +TTTT(a) \arrow{r}{μ(TTT(a))} \arrow{d}[swap]{TT(μ)} & TTT(a) \arrow{d}{T(μ)} & \mbox{} \\ +TTT(a) \arrow{r}{μ(TT(a))} & TT(a) & \mbox{} \\ \end{tikzcd}
--- a/nat.agda Sat Jul 06 07:27:57 2013 +0900 +++ b/nat.agda Sat Jul 06 08:50:32 2013 +0900 @@ -137,15 +137,27 @@ -- f ○ η(a) = f -record Kleisli { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } +record Kleisli { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) + ( T : Functor A A ) + ( η : NTrans A A identityFunctor T ) + ( μ : NTrans A A (T ○ T) T ) + ( M : Monad A T η μ ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where + join : { a b : Obj A } -> ( c : Obj A ) -> + ( Hom A b ( FObj T c )) -> ( Hom A a ( FObj T b)) -> Hom A a ( FObj T c ) + join c g f = A [ Trans μ c o A [ FMap T g o f ] ] + +open Kleisli +Lemma7 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} { T : Functor A A } { η : NTrans A A identityFunctor T } { μ : NTrans A A (T ○ T) T } - { M : Monad A T η μ } : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where - infix 9 _*_ - _*_ : { a b c : Obj A } -> - ( Hom A b ( FObj T c )) -> ( Hom A a ( FObj T b)) -> Hom A a ( FObj T c ) - g * f = A [ Trans μ ({!!} (Category.cod A g)) o A [ FMap T g o f ] ] + { a b : Obj A } + { f : Hom A a ( FObj T b) } + { M : Monad A T η μ } + ( K : Kleisli A T η μ M) + -> A [ join ? ? ? ≈ f ] +Lemma7 = \m -> {!!} +