Mercurial > hg > Members > kono > Proof > category
changeset 668:07c84c8d9e4f
SetCompleteness done!
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 30 Oct 2017 11:57:49 +0900 |
parents | 60e881060534 |
children | 220ea177572f |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 11 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Fri Oct 27 10:01:35 2017 +0900 +++ b/SetsCompleteness.agda Mon Oct 30 11:57:49 2017 +0900 @@ -182,7 +182,7 @@ ≡cong2 _ refl refl = refl open import Relation.Binary.HeterogeneousEquality as HE renaming ( cong to cong' ; sym to sym' ; subst₂ to subst₂' ; Extensionality to Extensionality' ) - using (_≅_;refl) + using (_≅_;refl; ≡-to-≅) postulate ≅extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → HE.Extensionality c₂ c₂ snat-cong : {c : Level} @@ -251,7 +251,7 @@ limit1 a t x ≡⟨⟩ record { snmap = λ i → ( TMap t i ) x ; sncommute = λ i j f → comm2 t f } - ≡⟨ snat-cong (limit1 a t x) (f x ) ( extensionality Sets ( λ i → eq1 x i )) (eq5 x ( extensionality Sets ( λ i → eq1 x i ) )) ⟩ + ≡⟨ snat-cong (limit1 a t x) (f x ) ( extensionality Sets ( λ i → eq1 x i )) (eq5 x ) ⟩ record { snmap = λ i → snmap (f x ) i ; sncommute = λ i j g → sncommute (f x ) i j g } ≡⟨⟩ f x @@ -264,17 +264,16 @@ eq2 x i j f = ≡cong ( λ f → f x ) ( IsNTrans.commute ( isNTrans t ) ) eq3 : (x : a ) (i j : Obj C) (k : I) → ΓMap s Γ k (snmap (f x) i) ≡ snmap (f x) j eq3 x i j k = sncommute (f x ) i j k - eq3' : (x : a ) (i j : Obj C) (k : I) → - ( ΓMap s Γ k (TMap t i x) ≡ TMap t j x ) ≡ ( ΓMap s Γ k (snmap (f x) i) ≡ snmap (f x) j ) - eq3' x i j k = ≡cong ( λ h → ( ΓMap s Γ k (h i) ≡ h j )) ( extensionality Sets ( λ i → eq1 x i ) ) - irr≅ : { c₂ : Level} {d e : Set c₂ } { x : d } { y : e } ( ee : d ≡ e ) ( eq eq' : x ≅ y ) → eq ≅ eq' - irr≅ refl refl refl = refl + irr≅ : { c₂ : Level} {d e : Set c₂ } { x1 y1 : d } { x2 y2 : e } + ( ee : x1 ≅ x2 ) ( ee : y1 ≅ y2 ) ( eq : x1 ≡ y1 ) ( eq' : x2 ≡ y2 ) → eq ≅ eq' + irr≅ refl refl refl refl = refl eq4 : ( x : a) ( i j : Obj C ) ( g : I ) → ≡cong ( λ h → h x ) ( IsNTrans.commute ( isNTrans t ) {i} {j} {hom← s g } ) ≅ sncommute (f x) i j g - eq4 x i j g = ? -- irr≅ ? ? ? - postulate eq6 : {a : Level } {A : Set a} {B : A → Set a} {f g : (y : A) → B y} → (∀ y → f y ≡ g y) → ( ( λ y → f y ) ≅ ( λ y → g y )) - -- eq5 : ( x : a) → sncommute (limit1 a t x) ≅ sncommute (f x) - eq5 : ( x : a) → ( ( λ i → TMap t i x ) ≡ snmap (f x) ) + eq4 x i j g = irr≅ (≡-to-≅ (≡cong ( λ h → ΓMap s Γ g h ) (eq1 x i))) (≡-to-≅ (eq1 x j )) (eq2 x i j g ) (eq3 x i j g ) + -- heterogenous extensionarity + postulate eq6 : {a : Level } {A : Set a} {B B' : A → Set a} + {f : (y : A) → B y} {g : (y : A) → B' y} → (∀ y → f y ≅ g y) → ( ( λ y → f y ) ≅ ( λ y → g y )) + eq5 : ( x : a) → ( λ i j g → ≡cong ( λ h → h x ) ( IsNTrans.commute ( isNTrans t ) {i} {j} {hom← s g } )) ≅ ( λ i j g → sncommute (f x) i j g ) - eq5 x eq = {!!} + eq5 x = eq6 ( λ i → eq6 ( λ j → eq6 ( λ g → eq4 x i j g ) ) )