Mercurial > hg > Members > kono > Proof > category
changeset 947:095fd0829ccf
use postulate on Hom of FCat
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 18 May 2020 23:13:14 +0900 |
parents | f8e6e9128f3d |
children | dca4b29553cb |
files | CCCGraph.agda |
diffstat | 1 files changed, 14 insertions(+), 22 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph.agda Mon May 18 18:41:55 2020 +0900 +++ b/CCCGraph.agda Mon May 18 23:13:14 2020 +0900 @@ -428,25 +428,6 @@ open ccc-from-graph g - FCat' : Obj (Cart {suc c₁} {suc c₁ ⊔ c₂} {c₁ ⊔ c₂}) - FCat' = record { cat = record { - Obj = Obj PL - ; Hom = λ a b → {f : Hom PL a b } → Hom B (FObj CS a) (FObj CS b) - ; _o_ = {!!} - ; _≈_ = {!!} - ; Id = λ {a} → id1 B (FObj CS a) - ; isCategory = record { - isEquivalence = {!!}; - identityL = λ {a b f} → {!!}; - identityR = λ {a b f} → {!!}; - o-resp-≈ = λ {a b c f g h i} → {!!}; - associative = λ{a b c d f g h } → {!!} } - } ; - ≡←≈ = λ eq → {!!} ; - ccc = {!!} - } where - B = Sets {c₁ ⊔ c₂} - FCat : Obj (Cart {suc c₁} {c₁ ⊔ c₂} {c₁ ⊔ c₂}) FCat = record { cat = record { Obj = Obj PL @@ -459,7 +440,7 @@ identityL = λ {a b f} → IsCategory.identityL (Category.isCategory B) ; identityR = λ {a b f} → IsCategory.identityR (Category.isCategory B) ; o-resp-≈ = λ {a b c f g h i} → IsCategory.o-resp-≈ (Category.isCategory B); - associative = λ{a b c d f g h } → IsCategory.associative (Category.isCategory B) + associative = λ {a b c d f g h } → IsCategory.associative (Category.isCategory B) } } ; ≡←≈ = λ eq → eq ; @@ -467,6 +448,11 @@ } where B = Sets {c₁ ⊔ c₂} + -- Hom FCat is an image of Fucntor CS, but I don't know how to write it + postulate + fcat-pl : {a b : Obj (cat FCat) } → Hom (cat FCat) a b → Hom PL a b + fcat-eq : {a b : Obj (cat FCat) } → (f : Hom (cat FCat) a b ) → FMap CS (fcat-pl f) ≡ f + ccc-graph-univ : {c₁ c₂ : Level} → UniversalMapping (Grph {c₁} {c₂}) (Cart {suc c₁ } {c₁ ⊔ c₂} {c₁ ⊔ c₂}) forgetful.UX ccc-graph-univ {c₁} {c₂} = record { @@ -493,7 +479,7 @@ -- Sets ((z : vertx g) → C z x) ----> ((z : vertx g) → C z y) = h : Hom Sets (fobj (atom x)) (fobj (atom y)) -- F : Obj (Grph {c₁} {c₂}) → Obj (Cart {suc c₁} {c₁ ⊔ c₂} {c₁ ⊔ c₂}) - F g = FCat' where open fcat g + F g = FCat where open fcat g η : (a : Obj (Grph {c₁} {c₂}) ) → Hom Grph a (FObj UX (F a)) η a = record { vmap = λ y → vm y ; emap = λ f → em f } where fo : Graph {suc c₁ } {c₁ ⊔ c₂} @@ -511,7 +497,13 @@ cobj {g} {c} f (b <= a) = CCC._<=_ (ccc c) (cobj {g} {c} f b) (cobj {g} {c} f a) c-map : {g : Obj (Grph )} {c : Obj Cart} {A B : Objs g} → (f : Hom Grph g (FObj UX c) ) → (fobj g A → fobj g B) → Hom (cat c) (cobj {g} {c} f A) (cobj {g} {c} f B) - c-map {g} {c} {a} {atom b} f y = {!!} + c-map {g} {c} {a} {atom b} f y with fcat.fcat-pl {c₁} {c₂} g {a} {atom b} y + c-map {g} {c} {atom b} {atom b} f y | id (atom b) = id1 (cat c) _ + c-map {g} {c} {a} {atom b} f y | iv {_} {_} {d} (arrow x) t = + (cat c) [ emap (m12 (uobj {c₁} {c₂} c)) ( emap f x) o c-map {g} {c} {a} {d} f (fmap g t) ] + c-map {g} {c} {a} {atom b} f y | iv {_} {_} {d} π t = (cat c) [ CCC.π (ccc c) o c-map {g} {c} {a} {d} f (fmap g t)] + c-map {g} {c} {a} {atom b} f y | iv {_} {_} {d} π' t = (cat c) [ CCC.π' (ccc c) o c-map {g} {c} {a} {d} f (fmap g t) ] + c-map {g} {c} {a} {atom b} f y | iv {_} {_} {d} ε t = (cat c) [ CCC.ε (ccc c) o c-map {g} {c} {a} {d} f (fmap g t) ] -- with emap (m12 (uobj {c₁} {c₂} c)) ( emap f {!!} ) c-map {g} {c} {a} {⊤} f x = CCC.○ (ccc c) (cobj f a) c-map {g} {c} {a} {x ∧ y} f z = CCC.<_,_> (ccc c) (c-map f (λ k → proj₁ (z k))) (c-map f (λ k → proj₂ (z k)))