Mercurial > hg > Members > kono > Proof > category
changeset 102:09af60198ce5
on goning
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 31 Jul 2013 15:26:25 +0900 |
parents | 0f7086b6a1a6 |
children | 8dcf926482af |
files | em-category.agda |
diffstat | 1 files changed, 5 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/em-category.agda Wed Jul 31 15:17:15 2013 +0900 +++ b/em-category.agda Wed Jul 31 15:26:25 2013 +0900 @@ -31,22 +31,19 @@ -- open Functor open NTrans -record IsEMAlgebra { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } { T : Functor A A } - (a : Obj A) (φ : Hom A (FObj T a) a ) : Set c₁ where +record IsEMAlgebra (a : Obj A) (φ : Hom A (FObj T a) a ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ)) where field identity : A [ A [ φ o TMap η a ] ≈ id1 A a ] eval : A [ A [ φ o TMap μ a ] ≈ A [ φ o FMap T φ ] ] open IsEMAlgebra -record EMAlgebra { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } { T : Functor A A } - (a : Obj A) (φ : FObj T a -> a ) : Set c₂ where +record EMAlgebra (a : Obj A) (φ : Hom A (FObj T a) a ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ)) where field - isEMAlbgebra : IsEMAlgebra {c₁} {c₂} {ℓ} {A} {T} a φ + isEMAlbgebra : IsEMAlgebra a φ open EMAlgebra -data EMObj { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } { T : Functor A A } - {a : Obj A} {φ : FObj T a -> a } {EMAlgebra a φ} : Set ( c₁ ⊔ c₂ ) where - emObj : \a φ -> (IsEMAlgebra a φ) -> EMObj { c₁} {c₂} {ℓ} {A} {T} {a} {φ} +data EMObj {a : Obj A} {φ : Hom A (FObj T a) a } : Set ( c₁ ⊔ c₂ ) where + emObj : \a φ -> (IsEMAlgebra a φ) -> EMObj {a} {φ} emobj : EMObj -> Obj A emobj (emObj x φ isAlgebra) = x