Mercurial > hg > Members > kono > Proof > category
changeset 536:09beac05a0fb
add iso1
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 30 Mar 2017 17:34:37 +0900 |
parents | 5d7f8921bac0 |
children | 2f261a3836bc |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 7 insertions(+), 13 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Thu Mar 30 17:08:16 2017 +0900 +++ b/SetsCompleteness.agda Thu Mar 30 17:34:37 2017 +0900 @@ -152,24 +152,20 @@ small→ : Obj C → I small← : I → Obj C small-iso : { x : Obj C } → Hom C (small← ( small→ x )) x - small-≡ : { x : Obj C } → (small← ( small→ x )) ≡ x shom→ : {i j : Obj C } → Hom C i j → I → I shom← : {i j : I } → ( f : I → I ) → Hom C ( small← i ) ( small← j ) - shom-iso : {i j : I } → ( f : Hom C ( small← i ) ( small← j ) ) → C [ shom← ( shom→ f ) ≈ f ] + iso1 : {a b : Obj C} {f : Hom C a b} → C [ f o small-iso ] ≡ C [ small-iso o shom← (shom→ f) ] + + -- iso1 should be proved by these ... + -- small-≡ : { x : Obj C } → (small← ( small→ x )) ≡ x + -- shom-iso : {i j : I } → ( f : Hom C ( small← i ) ( small← j ) ) → C [ shom← ( shom→ f ) ≈ f ] + -- ≈-≡ : {a b : Obj C } { x y : Hom C a b } → (x≈y : C [ x ≈ y ] ) → x ≡ y open Small ≡subst : {c : Level } { x y : Set c } { f : Set c → Set c } → ( x ≡ y ) → f x ≡ f y ≡subst {c} {x} {.x} {f} refl = ≡cong ( λ x → f x ) refl -small-hom-iso : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) { x y : Obj C } → - (s : Small C I ) → Hom C (small← s ( small→ s x )) y ≡ Hom C x y -small-hom-iso C I {x} {y} s = ≡cong ( λ x → Hom C x y ) ( small-≡ s ) - -small-hom-iso' : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) { x y : Obj C } → - (s : Small C I ) → Hom C (small← s ( small→ s x )) y → Hom C x y -small-hom-iso' C I {x} {y} s f = {!!} - iid : { c₁ c₂ ℓ : Level} { C : Category c₁ c₂ ℓ } {I : Set c₁} ( s : Small C I ) ( Γ : Functor C (Sets {c₁} ) ){i : Obj C } → Hom Sets (FObj Γ (small← s (small→ s i))) (FObj Γ i) iid s Γ = FMap Γ ( small-iso s ) @@ -201,8 +197,6 @@ TMap = λ i → λ sn → iid s Γ ( snmap sn (small→ s i ) ) ; isNTrans = record { commute = comm1 } } where - iso1 : {a b : Obj C} {f : Hom C a b} → C [ f o small-iso s ] ≡ C [ small-iso s o shom← s (shom→ s f) ] - iso1 = {!!} comm1 : {a b : Obj C} {f : Hom C a b} → Sets [ Sets [ FMap Γ f o (λ sn → iid s Γ (snmap sn (small→ s a))) ] ≈ Sets [ (λ sn → iid s Γ (snmap sn (small→ s b))) o FMap (K Sets C (snat (ΓObj s Γ) (ΓMap s Γ))) f ] ] @@ -212,7 +206,7 @@ ( Sets [ FMap Γ f o FMap Γ ( small-iso s ) ] ) (snmap sn (small→ s a)) ≡⟨ ≡cong (λ z → z (snmap sn (small→ s a)) ) (sym ( IsFunctor.distr (isFunctor Γ ) )) ⟩ FMap Γ ( C [ f o (small-iso s) ] ) (snmap sn (small→ s a) ) - ≡⟨ ≡cong (λ z → ( FMap Γ z ) (snmap sn (small→ s a))) iso1 ⟩ + ≡⟨ ≡cong (λ z → ( FMap Γ z ) (snmap sn (small→ s a))) (iso1 s) ⟩ FMap Γ ( C [ (small-iso s) o shom← s (shom→ s f) ] ) ( snmap sn ( small→ s a )) ≡⟨ ≡cong (λ z → z (snmap sn (small→ s a)) ) ( IsFunctor.distr (isFunctor Γ ) ) ⟩ ( Sets [ FMap Γ (small-iso s) o FMap Γ (shom← s (shom→ s f)) ] ) ( snmap sn ( small→ s a ))