changeset 222:0bc85361b7d0

iso of equalizer
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 05 Sep 2013 01:23:53 +0900
parents ea0407fb8f02
children 8b3aeba14b5e
files equalizer.agda
diffstat 1 files changed, 134 insertions(+), 24 deletions(-) [+]
line wrap: on
line diff
--- a/equalizer.agda	Wed Sep 04 20:35:43 2013 +0900
+++ b/equalizer.agda	Thu Sep 05 01:23:53 2013 +0900
@@ -69,6 +69,89 @@
                    id1 A a

 
+equalizer-eq-e  : { a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {a} f g) → (eq : A [ f ≈ g ] ) → 
+      A [ k eqa (id1 A a) (f1=g1 eq) ≈ id1 A a ] →
+      A [ e eqa ≈ id1 A a ] 
+equalizer-eq-e {a} {b} {f} {g} eqa eq k=1 =  let open ≈-Reasoning (A) in
+             begin
+                   e eqa 
+             ≈↑⟨ idR ⟩
+                   e eqa  o id1 A a
+             ≈↑⟨ cdr k=1 ⟩
+                   e eqa  o k eqa (id1 A a) (f1=g1 eq)
+             ≈⟨ ek=h eqa ⟩
+                   id1 A a
+             ∎
+
+--           e eqa f g        f 
+--         c ----------> a ------->b
+--        |^ 
+--        || 
+--    h   || h-1
+--        v| 
+--         c'              
+
+equalizer+iso : {a b c c' : Obj A } {f g : Hom A a b } ( eqa : Equalizer A {c} f g) → (h-1 : Hom A c' c ) → (h : Hom A c c' ) →
+                A [ A [ h-1  o h ]  ≈ id1 A c ] → A [ A [ h  o h-1 ]  ≈ id1 A c' ]
+           → Equalizer A {c'} f g 
+equalizer+iso  {a} {b} {c} {c'} {f} {g} eqa h-1 h h-1-id h-id =  record {
+      e = A [  e eqa o h-1 ] ;
+      fe=ge = fe=ge1 ;
+      k = λ j eq → A [ h o k eqa j eq ] ;
+      ek=h = ek=h1 ; 
+      uniqueness = uniqueness1
+  } where
+      fe=ge1 :  A [ A [ f o A [  e eqa  o h-1 ] ] ≈ A [ g o A [  e eqa o h-1 ] ] ]
+      fe=ge1 = let open ≈-Reasoning (A) in 
+             begin
+                  f o ( e eqa o h-1  )
+             ≈⟨ assoc  ⟩
+                  (f o e eqa ) o h-1
+             ≈⟨ car (fe=ge eqa) ⟩
+                  (g o e eqa ) o h-1
+             ≈↑⟨ assoc ⟩
+                  g o ( e eqa  o h-1 )
+             ∎
+      ek=h1 :   {d : Obj A} {j : Hom A d a} {eq : A [ A [ f o j ] ≈ A [ g o j ] ]} →
+                A [ A [ A [ e eqa o h-1 ] o A [ h o k eqa j eq ] ] ≈ j ]
+      ek=h1 {d} {j} {eq} =  let open ≈-Reasoning (A) in
+             begin
+                   (e eqa o h-1 ) o ( h o k eqa j eq )
+             ≈↑⟨ assoc ⟩
+                   e eqa o ( h-1  o ( h o k eqa j eq ))
+             ≈⟨ cdr assoc ⟩
+                   e eqa o (( h-1  o  h ) o k eqa j eq )
+             ≈⟨ cdr (car (h-1-id )) ⟩
+                   e eqa o (id1 A c o k eqa j eq )
+             ≈⟨ cdr idL ⟩
+                   e eqa o (k eqa j eq )
+             ≈⟨ ek=h eqa ⟩
+                   j
+             ∎
+      uniqueness1 : {d : Obj A} {h' : Hom A d a} {eq : A [ A [ f o h' ] ≈ A [ g o h' ] ]} {j : Hom A d c'} →
+                A [ A [ A [ e eqa o h-1 ] o j ] ≈ h' ] →
+                A [ A [ h o k eqa h' eq ] ≈ j ]
+      uniqueness1 {d} {h'} {eq} {j} ej=h  =  let open ≈-Reasoning (A) in
+             begin
+                   h o k eqa h' eq
+             ≈⟨ cdr (uniqueness eqa (
+                 begin
+                    e eqa  o ( h-1 o j )
+                 ≈⟨ assoc ⟩
+                    (e eqa  o  h-1 ) o j 
+                 ≈⟨ ej=h ⟩
+                    h'
+                 ∎
+             )) ⟩
+                   h  o ( h-1 o j )
+             ≈⟨ assoc  ⟩
+                   (h  o  h-1 ) o j 
+             ≈⟨ car h-id ⟩
+                   id1 A c' o j 
+             ≈⟨ idL ⟩
+                   j
+             ∎
+
 --           e eqa f g        f
 --         c ----------> a ------->b
 --         ^ ---> d ---> 
@@ -269,18 +352,43 @@
       → Hom A c c'   --- != id1 A c
 equalizer-iso  {c} eqa eqa' = k eqa' (e eqa) (fe=ge eqa)
 
+f1=gh : { a b c d : Obj A } {f g : Hom A a b } → { e : Hom A c a } → { h : Hom A d c } →
+       (eq : A [ A [ f  o e ] ≈ A [ g  o e ] ] ) → A [ A [ f o A [ e o h ] ] ≈ A [ g o A [ e  o h ]  ] ]
+f1=gh {a} {b} {c} {d} {f} {g} {e} {h} eq = let open ≈-Reasoning (A) in 
+             begin
+                  f o ( e  o h )
+             ≈⟨ assoc  ⟩
+                  (f o  e ) o h 
+             ≈⟨ car eq  ⟩
+                  (g o  e ) o h 
+             ≈↑⟨ assoc  ⟩
+                  g o ( e  o h )
+             ∎
+
 --
 --        
 --           e eqa f g        f
 --         c ----------> a ------->b
 --
 equalizer-iso-eq : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' :  Equalizer A {c'} f g ) 
-      → A [ A [ equalizer-iso eqa eqa' o   equalizer-iso eqa' eqa ] ≈  id1 A c' ]
-equalizer-iso-eq {c} {c'} {f} {g} eqa eqa' =  let open ≈-Reasoning (A) in
+      { h : Hom A a c } →  A [ A [ h o e eqa ] ≈ id1 A c ] → A [ A [ k eqa (e eqa' ) (fe=ge eqa') o k eqa' (e  eqa ) (fe=ge eqa)  ] ≈ id1 A c ]
+equalizer-iso-eq {c} {c'} {f} {g} eqa eqa' {h} rev =  let open ≈-Reasoning (A) in
              begin
-                  k eqa' (e eqa) (fe=ge eqa)  o  k eqa (e eqa' ) (fe=ge eqa' )
-             ≈⟨ {!!} ⟩
-                 id1 A c'
+                 k eqa (e eqa' ) (fe=ge eqa') o k eqa' (e  eqa ) (fe=ge eqa)
+             ≈↑⟨ idL ⟩
+                 (id1 A c)  o ( k eqa (e eqa' ) (fe=ge eqa') o k eqa' (e  eqa ) (fe=ge eqa) )
+             ≈↑⟨ car rev  ⟩
+                 ( h o e eqa )  o ( k eqa (e eqa' ) (fe=ge eqa') o k eqa' (e  eqa ) (fe=ge eqa) )
+             ≈↑⟨ assoc ⟩
+                  h o ( e eqa   o ( k eqa (e eqa' ) (fe=ge eqa') o k eqa' (e  eqa ) (fe=ge eqa) ) )
+             ≈⟨ cdr assoc ⟩
+                  h o (( e eqa   o  k eqa (e eqa' ) (fe=ge eqa')) o k eqa' (e  eqa ) (fe=ge eqa)   )
+             ≈⟨ cdr ( car (ek=h eqa) )  ⟩
+                  h o ( e eqa'  o k eqa' (e  eqa ) (fe=ge eqa)   )
+             ≈⟨ cdr (ek=h eqa' ) ⟩
+                  h o  e eqa
+             ≈⟨  rev  ⟩
+                 id1 A c

 
 -- ke = e' k'e' = e  → k k' = 1 , k' k = 1
@@ -289,9 +397,9 @@
 
 --     x e = e -> x = id?
 
-lemma-equ1 :  { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → {a b c : Obj A} (f g : Hom A a b)  → 
+lemma-equ1 : {a b c : Obj A} (f g : Hom A a b)  → 
          ( {a b c : Obj A} → (f g : Hom A a b)  → Equalizer A {c} f g ) → EqEqualizer A {c} f g
-lemma-equ1  A {a} {b} {c} f g eqa = record {
+lemma-equ1  {a} {b} {c} f g eqa = record {
       α = λ f g →  e (eqa f g ) ; -- Hom A c a
       γ = λ {a} {b} {c} {d} f g h → k (eqa f g ) {d} ( A [ h  o (e ( eqa (A [ f  o  h ] ) (A [ g o h ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h ) ;  -- Hom A c d
       δ =  λ {a} f → k (eqa f f) (id1 A a)  (lemma-equ2 f); -- Hom A a c
@@ -342,30 +450,32 @@
              ≈⟨ ek=h (eqa f g)  ⟩
                     h o e (eqa (f o h ) ( g o h ))

-     lemma-equ6 : {d : Obj A} {k₁ : Hom A d c} → A [ 
-          A [ k (eqa f g) (A [ A [ e (eqa f g) o k₁ ] o e (eqa (A [ f o A [ e (eqa f g) o k₁ ] ]) (A [ g o A [ e (eqa f g) o k₁ ] ])) ])
-                     (lemma-equ4 {a} {b} {c} f g (A [ e (eqa f g) o k₁ ])) o 
-              k (eqa (A [ f o A [ e (eqa f g) o k₁ ] ]) (A [ f o A [ e (eqa f g) o k₁ ] ])) (id1 A d) (lemma-equ2 (A [ f o A [ e (eqa f g) o k₁ ] ])) ]
-              ≈ k₁ ]
-     lemma-equ6 {d} {k₁} = let open ≈-Reasoning (A) in 
+     lemma-equ6 : {d : Obj A} {j : Hom A d c} → A [ 
+          A [ k (eqa f g) (A [ A [ e (eqa f g) o j ] o e (eqa (A [ f o A [ e (eqa f g) o j ] ]) (A [ g o A [ e (eqa f g) o j ] ])) ])
+                     (lemma-equ4 {a} {b} {c} f g (A [ e (eqa f g) o j ])) o 
+              k (eqa (A [ f o A [ e (eqa f g) o j ] ]) (A [ f o A [ e (eqa f g) o j ] ])) (id1 A d) (lemma-equ2 (A [ f o A [ e (eqa f g) o j ] ])) ]
+              ≈ j ]
+     lemma-equ6 {d} {j} = let open ≈-Reasoning (A) in 
              begin
-                     ( k (eqa f g) (( ( e (eqa f g) o k₁ ) o e (eqa (( f o ( e (eqa f g) o k₁ ) )) (( g o ( e (eqa f g) o k₁ ) ))) ))
-                            (lemma-equ4 {a} {b} {c} f g (( e (eqa f g) o k₁ ))) o
-                       k (eqa (( f o ( e (eqa f g) o k₁ ) )) (( f o ( e (eqa f g) o k₁ ) ))) (id1 A d) (lemma-equ2 (( f o ( e (eqa f g) o k₁ ) ))) )
+                     ( k (eqa f g) (( ( e (eqa f g) o j ) o e (eqa (( f o ( e (eqa f g) o j ) )) (( g o ( e (eqa f g) o j ) ))) ))
+                            (lemma-equ4 {a} {b} {c} f g (( e (eqa f g) o j ))) o
+                       k (eqa (( f o ( e (eqa f g) o j ) )) (( f o ( e (eqa f g) o j ) ))) (id1 A d) (lemma-equ2 (( f o ( e (eqa f g) o j ) ))) )
              ≈⟨ car ( uniqueness (eqa f g) ( begin
-                   e (eqa f g) o  k₁ 
+                   e (eqa f g) o  j 
                 ≈⟨ {!!} ⟩
-                   (e (eqa f g) o k₁) o e (eqa (f o e (eqa f g) o k₁) (g o e (eqa f g) o k₁))
+                   (e (eqa f g) o j) o e (eqa (f o e (eqa f g) o j) (g o e (eqa f g) o j))
              ∎ ))  ⟩
-                    k₁ o  k (eqa (( f o ( e (eqa f g) o k₁ ) )) (( f o ( e (eqa f g) o k₁ ) ))) (id1 A d) (lemma-equ2 (( f o ( e (eqa f g) o k₁ ) ))) 
-             ≈⟨ cdr ( uniqueness (eqa (( f o ( e (eqa f g) o k₁ ) )) (( f o ( e (eqa f g) o k₁ ) ))) ( begin
-                  e (eqa (f o e (eqa f g) o k₁) (f o e (eqa f g) o k₁)) o id1 A d
+                    j o  k (eqa (( f o ( e (eqa f g) o j ) )) (( f o ( e (eqa f g) o j ) ))) (id1 A d) (lemma-equ2 (( f o ( e (eqa f g) o j ) ))) 
+             ≈⟨ cdr ( uniqueness (eqa (( f o ( e (eqa f g) o j ) )) (( f o ( e (eqa f g) o j ) ))) ( begin
+                  e (eqa (f o e (eqa f g) o j) (f o e (eqa f g) o j)) o id1 A d
+                ≈⟨ idR ⟩
+                  e (eqa (f o e (eqa f g) o j) (f o e (eqa f g) o j)) 
                 ≈⟨ {!!} ⟩
-                 id1 A d
+                  id1 A d
              ∎ ))  ⟩
-                    k₁  o  id1 A d
+                    j  o  id1 A d
              ≈⟨ idR ⟩
-                    k₁
+                    j