Mercurial > hg > Members > kono > Proof > category
changeset 845:0c81ded4a734
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 02 Apr 2020 20:55:29 +0900 |
parents | 3b8c1ca0d737 |
children | 4013cbfdd15e |
files | CCCGraph1.agda |
diffstat | 1 files changed, 22 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph1.agda Thu Apr 02 20:42:18 2020 +0900 +++ b/CCCGraph1.agda Thu Apr 02 20:55:29 2020 +0900 @@ -44,8 +44,20 @@ iv f ( (○ a)) ・ g = iv f ( ○ _ ) iv f (iv f₁ g) ・ h = iv f ( (iv f₁ g) ・ h ) + eval : {a b : Objs } (f : Arrows a b ) → Arrows a b + eval ( id a ) = id a + eval ( ○ a ) = ○ a + eval ( < f , g > ) = < eval f , eval g > + eval ( iv f (id _) ) = iv f (id _) + eval ( iv π < g , g₁ > ) = eval g + eval ( iv π' < g , g₁ > ) = eval g₁ + eval ( iv ε < g , g₁ > ) = iv ε < eval g , eval g₁ > + eval ( iv (f *) < g , g₁ > ) = iv (f *) < eval g , eval g₁ > + eval ( iv f ( (○ a)) ) = iv f ( ○ _ ) + eval ( iv f (iv f₁ g) ) = iv f ( iv f₁ (eval g)) + _==_ : {a b : Objs } → ( x y : Arrows a b ) → Set (c₁ ⊔ c₂) - _==_ {a} {b} x y = ( x ・ id a ) ≡ ( y ・ id a ) + _==_ {a} {b} x y = eval x ≡ eval y PL : Category (c₁ ⊔ c₂) (c₁ ⊔ c₂) (c₁ ⊔ c₂) PL = record { @@ -79,7 +91,7 @@ identityR≡ {a} {_} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) (identityR≡ {a} {_} {f} ) (identityR≡ {a} {_} {f₁} ) identityR≡ {a} {b} {iv x (id a)} = refl identityR≡ {a} {b} {iv x (○ a)} = refl - identityR≡ {a} {b} {iv π < f , f₁ >} = ? + identityR≡ {a} {b} {iv π < f , f₁ >} = {!!} identityR≡ {a} {b} {iv π' < f , f₁ >} = {!!} identityR≡ {a} {b} {iv ε < f , f₁ >} = cong ( λ k → iv ε k ) ( identityR≡ {_} {_} {< f , f₁ >} ) identityR≡ {a} {_} {iv (x *) < f , f₁ >} = cong ( λ k → iv (x *) k ) ( identityR≡ {_} {_} {< f , f₁ >} ) @@ -91,7 +103,14 @@ iv x (iv f f₁) ∎ where open ≡-Reasoning identityR : {A B : Objs} {f : Arrows A B} → (f ・ id A) == f - identityR = {!!} + identityR {a} {.a} {id a} = refl + identityR {a} {.⊤} {○ a} = refl + identityR {a} {.(_ ∧ _)} {< f , f₁ >} = cong₂ ( λ j k → < j , k > ) ( identityR {_} {_} {f} ) ( identityR {_} {_} {f₁} ) + identityR {a} {.(atom _)} {iv (arrow x) f₁} = {!!} + identityR {a} {b} {iv π f₁} = {!!} + identityR {a} {b} {iv π' f₁} = {!!} + identityR {a} {b} {iv ε f₁} = {!!} + identityR {a} {.(_ <= _)} {iv (f *) f₁} = ? associative : {a b c d : Objs} (f : Arrows c d) (g : Arrows b c) (h : Arrows a b) → (f ・ (g ・ h)) == ((f ・ g) ・ h) associative (id a) g h = refl