Mercurial > hg > Members > kono > Proof > category
changeset 657:0d029674eb59
on going ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 06 Jul 2017 12:22:54 +0900 |
parents | 18431b63893b |
children | 9242298cffa8 |
files | freyd2.agda |
diffstat | 1 files changed, 27 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd2.agda Thu Jul 06 09:54:56 2017 +0900 +++ b/freyd2.agda Thu Jul 06 12:22:54 2017 +0900 @@ -492,6 +492,31 @@ nat-ε = record { TMap = λ x → arrow ( solution (id1 B (FObj U x))) ; isNTrans = record { commute = comm1 } } where + lemma-nat1 : {a b : Obj A} {f : Hom A a b} → + B [ B [ FMap U (A [ FMap (identityFunctor {_} {_} {_} {A}) f o arrow (initial (In (FObj U a)) + (record { obj = a ; hom = id1 B (FObj U a) })) ] ) o tmap-η (FObj U a) ] + ≈ B [ FMap U f o id1 B (FObj U a) ] ] + lemma-nat1 {a} {b} {f} = let open ≈-Reasoning B in begin + FMap U (A [ FMap (identityFunctor {_} {_} {_} {A}) f o arrow (initial (In (FObj U a)) + (record { obj = a ; hom = id1 B (FObj U a) })) ] ) o tmap-η (FObj U a) + ≈⟨ car (distr U) ⟩ + ( FMap U (FMap (identityFunctor {_} {_} {_} {A}) f) o FMap U (arrow (initial (In (FObj U a)) + (record { obj = a ; hom = id1 B (FObj U a) })))) o (tmap-η (FObj U a)) + ≈⟨ {!!} ⟩ + FMap U f + ≈↑⟨ idR ⟩ + FMap U f o id1 B (FObj U a) + ∎ + lemma-nat2 : {a b : Obj A} {f : Hom A a b} → + B [ B [ FMap U (A [ arrow (initial (In (FObj U b)) + (record { obj = b ; hom = id1 B (FObj U b) })) o FMap (F ○ U) f ] ) o tmap-η (FObj U a) ] + ≈ B [ FMap U f o id1 B (FObj U a) ] ] + lemma-nat2 {a} {b} {f} = let open ≈-Reasoning B in begin + FMap U (A [ arrow (initial (In (FObj U b)) + (record { obj = b ; hom = id1 B (FObj U b) })) o FMap (F ○ U) f ] ) o tmap-η (FObj U a) + ≈⟨ {!!} ⟩ + FMap U f o id1 B (FObj U a) + ∎ comm1 : {a b : Obj A} {f : Hom A a b} → A [ A [ FMap (identityFunctor {_} {_} {_} {A}) f o arrow (initial (In (FObj U a)) (record { obj = a ; hom = id1 B (FObj U a) })) ] @@ -499,9 +524,9 @@ comm1 {a} {b} {f} = let open ≈-Reasoning A in begin FMap (identityFunctor {_} {_} {_} {A}) f o arrow (initial (In (FObj U a)) (record { obj = a ; hom = id1 B (FObj U a) })) - ≈↑⟨ unique {!!} ⟩ + ≈↑⟨ unique lemma-nat1 ⟩ arrow (initial (In (FObj U a)) (record { obj = b ; hom = B [ FMap U f o id1 B (FObj U a) ] })) - ≈⟨ unique {!!} ⟩ + ≈⟨ unique lemma-nat2 ⟩ arrow (initial (In (FObj U b)) (record { obj = b ; hom = id1 B (FObj U b) })) o FMap (F ○ U) f ∎