Mercurial > hg > Members > kono > Proof > category
changeset 648:10f2057c8bff
use module
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 04 Jul 2017 10:16:07 +0900 |
parents | 4d261d04b176 |
children | 4d742e13fb7c |
files | freyd2.agda |
diffstat | 1 files changed, 40 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd2.agda Tue Jul 04 03:39:29 2017 +0900 +++ b/freyd2.agda Tue Jul 04 10:16:07 2017 +0900 @@ -372,6 +372,17 @@ -- Adjoint Functor Theorem -- +module Adjoint-Functor {c₁ c₂ ℓ : Level} (A B : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) ( comp : Complete A I ) + (U : Functor A B ) + (SFS : (b : Obj B) → SmallFullSubcategory ((K B A b) ↓ U) ) + (PI : (b : Obj B) → PreInitial (K B A b ↓ U) (SFSF (SFS b))) + ( i : (b : Obj B) → Obj ( K B A b ↓ U) ) + (In : (b : Obj B) → HasInitialObject ( K B A b ↓ U) (i b) ) + (LP : LimitPreserve A I B U ) where + + tmap-η' : (y : Obj B) → Hom B y (FObj U (obj (i y))) + tmap-η' y = hom (i y) + tmap-η : {c₁ c₂ ℓ : Level} (A B : Category c₁ c₂ ℓ) (U : Functor A B ) (i : (b : Obj B) → Obj ( K B A b ↓ U) ) @@ -408,6 +419,16 @@ ; ≈-cong = {!!} -- λ eq → extensionality A ( λ x → lemma-y-obj3 x eq ) } } where + identity1 : {a : Obj B} → A [ arrow (initial (In a) (objB A B U i a a (Id a))) ≈ Id (obj (i a)) ] + identity1 = {!!} + distr1 : {a b c : Obj B} {f : Hom B a b} {g : Hom B b c} → + A [ arrow (initial (In a) (objB A B U i a c (B [ g o f ]))) ≈ + A [ arrow (initial (In b) (objB A B U i b c g)) o arrow (initial (In a) (objB A B U i a b f)) ] ] + distr1 = {!!} + cong1 : {a : Obj B} {b : Obj B} {f g : Hom B a b} → + B [ f ≈ g ] → A [ arrow (initial (In a) (objB A B U i a b f)) ≈ + arrow (initial (In a) (objB A B U i a b g)) ] + cong1 = {!!} nat-ε : {c₁ c₂ ℓ : Level} (A B : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) ( comp : Complete A I ) (U : Functor A B ) @@ -418,9 +439,17 @@ (LP : LimitPreserve A I B U ) → NTrans A A ( (FunctorF A B I comp U SFS PI i In LP) ○ U ) identityFunctor nat-ε A B I comp U SFS PI i In LP = - record { TMap = λ i → {!!} ; isNTrans = record { commute = {!!} } } where - F : Functor B A - F = FunctorF A B I comp U SFS PI i In LP + record { + TMap = λ x → arrow ( initial (In (FObj U x)) (record { obj = x ; hom = id1 B (FObj U x) })) + ; isNTrans = record { commute = {!!} } } where + F : Functor B A + F = FunctorF A B I comp U SFS PI i In LP + comm1 : {a b : Obj A} {f : Hom A a b} → + A [ A [ FMap identityFunctor f o + arrow (initial (In (FObj U a)) (record { obj = a ; hom = id1 B (FObj U a) })) ] + ≈ A [ arrow (initial (In (FObj U b)) (record { obj = b ; hom = id1 B (FObj U b) })) + o FMap (FunctorF A B I comp U SFS PI i In LP ○ U) f ] ] + comm1 = {!!} nat-η : {c₁ c₂ ℓ : Level} (A B : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ) ( comp : Complete A I ) (U : Functor A B ) @@ -468,3 +497,11 @@ η = nat-η A B I comp U SFS PI i In LP ε : NTrans A A ( F ○ U ) identityFunctor ε = nat-ε A B I comp U SFS PI i In LP + adjoint1 : {b : Obj A} → B [ B [ FMap U (TMap (nat-ε A B I comp U SFS PI i In LP) b) o + TMap (nat-η A B I comp U SFS PI i In LP) (FObj U b) ] ≈ id1 B (FObj U b) ] + adjoint1 = {!!} + adjoint2 : {a : Obj B} → A [ A [ TMap (nat-ε A B I comp U SFS PI i In LP) + (FObj (FunctorF A B I comp U SFS PI i In LP) a) + o FMap (FunctorF A B I comp U SFS PI i In LP) (TMap (nat-η A B I comp U SFS PI i In LP) a) ] + ≈ id1 A (FObj (FunctorF A B I comp U SFS PI i In LP) a) ] + adjoint2 = {!!}