Mercurial > hg > Members > kono > Proof > category
changeset 720:13cef2bfa5c8
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 25 Nov 2017 11:34:22 +0900 |
parents | a017ed40dd77 |
children | a8b595fb4905 |
files | monoidal.agda |
diffstat | 1 files changed, 24 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/monoidal.agda Fri Nov 24 16:38:34 2017 +0900 +++ b/monoidal.agda Sat Nov 25 11:34:22 2017 +0900 @@ -479,13 +479,13 @@ comm3 {a} {b} = extensionality Sets ( λ x → comm30 {a} {b} x ) +_・_ : {c₁ : Level} { a b c : Obj (Sets {c₁} ) } → (b → c) → (a → b) → a → c +_・_ f g = λ x → f ( g x ) record IsApplicative {c₁ : Level} ( f : Functor (Sets {c₁}) (Sets {c₁}) ) ( pure : {a : Obj Sets} → Hom Sets a ( FObj f a ) ) ( _<*>_ : {a b : Obj Sets} → FObj f ( a → b ) → FObj f a → FObj f b ) : Set (suc (suc c₁)) where - _・_ : { a b c : Obj (Sets {c₁} ) } → (b → c) → (a → b) → a → c - _・_ f g = λ x → f ( g x ) field -- http://www.staff.city.ac.uk/~ross/papers/Applicative.pdf identity : { a : Obj Sets } { u : FObj f a } → pure ( id1 Sets a ) <*> u ≡ u @@ -541,10 +541,14 @@ _⊗_ x y = (IsMonoidal._□_ (Monoidal.isMonoidal M) ) x y _□_ : {a b c d : Obj Sets } ( f : Hom Sets a c ) ( g : Hom Sets b d ) → Hom Sets ( a ⊗ b ) ( c ⊗ d ) _□_ f g = FMap (m-bi M) ( f , g ) + right : {n : Level} { a b : Set n} → { x y : a → b } { h : a } → ( x ≡ y ) → x h ≡ y h + right {_} {_} {_} {_} {_} {h} eq = ≡-cong ( λ k → k h ) eq φ : {x : Obj (Sets × Sets) } → Hom Sets (FObj (Functor● Sets Sets MonoidalSets F) x) (FObj (Functor⊗ Sets Sets MonoidalSets F) x) φ x = Applicative.<*> mf (FMap F (λ j k → (j , k)) (proj₁ x )) (proj₂ x) _<*>_ : {a b : Obj Sets} → FObj F ( a → b ) → FObj F a → FObj F b _<*>_ = Applicative.<*> mf + pure : {a : Obj Sets } → Hom Sets a ( FObj F a ) + pure a = Applicative.pure mf a comm00 : {a b : Obj (Sets × Sets)} { f : Hom (Sets × Sets) a b} (x : ( FObj F (proj₁ a) * FObj F (proj₂ a)) ) → (Sets [ FMap (Functor⊗ Sets Sets MonoidalSets F) f o φ ]) x ≡ (Sets [ φ o FMap (Functor● Sets Sets MonoidalSets F) f ]) x comm00 {a} {b} {(f , g)} (x , y) = begin @@ -553,7 +557,7 @@ FMap F (λ xy → f (proj₁ xy) , g (proj₂ xy)) ((FMap F (λ j k → j , k) x) <*> y) ≡⟨ {!!} ⟩ (FMap F (λ j k → f j , k) x) <*> (FMap F g y) - ≡⟨ {!!} ⟩ + ≡⟨ ≡-cong ( λ k → k x <*> (FMap F g y)) ( IsFunctor.distr (isFunctor F )) ⟩ (FMap F (λ j k → j , k) (FMap F f x)) <*> (FMap F g y) ≡⟨⟩ φ ( ( FMap (Functor● Sets Sets MonoidalSets F) (f , g) ) ( x , y ) ) @@ -566,11 +570,18 @@ comm10 : {a b c : Obj Sets} → (x : ((FObj F a ⊗ FObj F b) ⊗ FObj F c) ) → (Sets [ φ o Sets [ id1 Sets (FObj F a) □ φ o Iso.≅→ (mα-iso isM) ] ]) x ≡ (Sets [ FMap F (Iso.≅→ (mα-iso isM)) o Sets [ φ o φ □ id1 Sets (FObj F c) ] ]) x comm10 {x} {y} {f} ((a , b) , c ) = begin - {!!} + φ (( id1 Sets (FObj F x) □ φ ) ( ( Iso.≅→ (mα-iso isM) ) ((a , b) , c))) + ≡⟨⟩ + (FMap F (λ j k → j , k) a) <*> ( (FMap F (λ j k → j , k) b) <*> c) + ≡⟨ sym (IsApplicative.composition ismf) ⟩ + ((pure _・_ <*> (FMap F (λ j k → j , k) a)) <*> (FMap F (λ j k → j , k) b)) <*> c ≡⟨ {!!} ⟩ - {!!} + FMap F (λ abc → proj₁ (proj₁ abc) , proj₂ (proj₁ abc) , proj₂ abc) ( (FMap F (λ j k → j , k) ( (FMap F (λ j k → j , k) a) <*> b)) <*> c) + ≡⟨⟩ + ( FMap F (Iso.≅→ (mα-iso isM))) (φ (( φ □ id1 Sets (FObj F f) ) ((a , b) , c))) ∎ where + open Relation.Binary.PropositionalEquality open Relation.Binary.PropositionalEquality.≡-Reasoning comm1 : {a b c : Obj Sets} → Sets [ Sets [ φ o Sets [ (id1 Sets (FObj F a) □ φ ) o Iso.≅→ (mα-iso isM) ] ] @@ -582,9 +593,9 @@ comm20 {a} {b} (x , OneObj ) = begin (FMap F (Iso.≅→ (mρ-iso isM))) ( φ (( FMap (m-bi MonoidalSets) (id1 Sets (FObj F a) , (λ _ → unit))) (x , OneObj) )) ≡⟨⟩ - FMap F proj₁ ((FMap F (λ j k → j , k) x) <*> (Applicative.pure mf OneObj)) + FMap F proj₁ ((FMap F (λ j k → j , k) x) <*> (pure OneObj)) ≡⟨ ≡-cong ( λ k → FMap F proj₁ k) ( IsApplicative.interchange ismf ) ⟩ - FMap F proj₁ ((Applicative.pure mf (λ f → f OneObj)) <*> (FMap F (λ j k → j , k) x)) + FMap F proj₁ ((pure (λ f → f OneObj)) <*> (FMap F (λ j k → j , k) x)) ≡⟨ {!!} ⟩ x ≡⟨⟩ @@ -600,9 +611,13 @@ FMap F (Iso.≅→ (mλ-iso isM)) o Sets [ φ o FMap (m-bi MonoidalSets) ((λ _ → unit ) , id1 Sets (FObj F b) ) ] ] ) x ≡ Iso.≅→ (mλ-iso isM) x comm30 {a} {b} ( OneObj , x) = begin - {!!} + (FMap F (Iso.≅→ (mλ-iso isM))) ( φ ( unit , x ) ) + ≡⟨⟩ + FMap F proj₂ ((FMap F (λ j k → j , k) (pure OneObj)) <*> x) ≡⟨ {!!} ⟩ - {!!} + x + ≡⟨⟩ + Iso.≅→ (mλ-iso isM) ( OneObj , x ) ∎ where open Relation.Binary.PropositionalEquality.≡-Reasoning @@ -632,8 +647,6 @@ pure {a} x = FMap F ( λ y → x ) (unit ) _<*>_ : {a b : Obj Sets} → FObj F ( a → b ) → FObj F a → FObj F b _<*>_ {a} {b} x y = FMap F ( λ r → ( proj₁ r ) ( proj₂ r ) ) (φ ( x , y )) - _・_ : { a b c : Obj (Sets {c₁} ) } → (b → c) → (a → b) → a → c - _・_ f g = λ x → f ( g x ) -- left does not work right it makes yellows. why? -- left : {n : Level} { a b : Set n} → { x y : a } { h : a → b } → ( x ≡ y ) → h x ≡ h y -- left {_} {_} {_} {_} {_} {h} eq = ≡-cong ( λ k → h k ) eq