Mercurial > hg > Members > kono > Proof > category
changeset 651:1503af5d7440
id of Functor F
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 05 Jul 2017 07:53:07 +0900 |
parents | 449025d1327f |
children | 236e916760e6 |
files | freyd2.agda |
diffstat | 1 files changed, 23 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd2.agda Tue Jul 04 11:03:37 2017 +0900 +++ b/freyd2.agda Wed Jul 05 07:53:07 2017 +0900 @@ -399,8 +399,29 @@ ; ≈-cong = cong1 } } where + id1comm : {a : Obj B} → B [ B [ FMap U (arrow (initial (In a) (ηf a a (id1 B a)))) o hom (i a) ] + ≈ B [ hom (i a) o FMap (K B A a) (arrow (initial (In a) (ηf a a (id1 B a)))) ] ] + id1comm {a} = let open ≈-Reasoning B in begin + FMap U (arrow (initial (In a) (ηf a a (id1 B a)))) o hom (i a) + ≈⟨ comm (initial (In a) (ηf a a (id1 B a))) ⟩ + hom (ηf a a (id1 B a)) o FMap (K B A a) (arrow (initial (In a) (ηf a a (id1 B a)))) + ≈⟨ idR ⟩ + hom (ηf a a (id1 B a)) + ≈⟨⟩ + hom (i a) o id1 B a + ≈⟨ idR ⟩ + hom (i a) + ≈↑⟨ idR ⟩ + hom (i a) o FMap (K B A a) (arrow (initial (In a) (ηf a a (id1 B a)))) + ∎ identity1 : {a : Obj B} → A [ arrow (initial (In a) (ηf a a (id1 B a))) ≈ id1 A (obj (i a)) ] - identity1 = {!!} + identity1 {a} = let open ≈-Reasoning A in begin + arrow (initial (In a) (ηf a a (id1 B a))) + ≈⟨ uniqueness (In a) (record { arrow = arrow (initial (In a) (ηf a a (id1 B a))); comm = id1comm }) ⟩ + arrow (initial (In a) (i a)) + ≈↑⟨ uniqueness (In a) (id1 ( K B A a ↓ U) (i a) ) ⟩ + id1 A (obj (i a)) + ∎ distr1 : {a b c : Obj B} {f : Hom B a b} {g : Hom B b c} → A [ arrow (initial (In a) (ηf a c (B [ g o f ]))) ≈ A [ arrow (initial (In b) (ηf b c g)) o arrow (initial (In a) (ηf a b f)) ] ] @@ -422,9 +443,7 @@ nat-η : NTrans B B identityFunctor (U ○ F) nat-η = record { TMap = λ y → tmap-η y ; isNTrans = record { commute = comm1 } } where - comm1 : {a b : Obj B} {f : Hom B a b} - → B [ B [ FMap (U ○ F) f o tmap-η a ] - ≈ B [ tmap-η b o f ] ] + comm1 : {a b : Obj B} {f : Hom B a b} → B [ B [ FMap (U ○ F) f o tmap-η a ] ≈ B [ tmap-η b o f ] ] comm1 {a} {b} {f} = let open ≈-Reasoning B in begin FMap (U ○ F) f o tmap-η a ≈⟨⟩