Mercurial > hg > Members > kono > Proof > category
changeset 24:171c31acf78e
on going
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 12 Jul 2013 18:58:16 +0900 |
parents | 736df1a35807 |
children | 8117bafdec7a |
files | nat.agda |
diffstat | 1 files changed, 13 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/nat.agda Fri Jul 12 17:56:00 2013 +0900 +++ b/nat.agda Fri Jul 12 18:58:16 2013 +0900 @@ -168,9 +168,9 @@ → A [ A [ f o A [ g o h ] ] ≈ A [ A [ f o g ] o h ] ] assoc = IsCategory.associative (Category.isCategory A) - distr : {T : Functor A A} → {a b c : Obj A} {g : Hom A b c} { f : Hom A a b } + distr : (T : Functor A A) → {a b c : Obj A} {g : Hom A b c} { f : Hom A a b } → A [ ( FMap T (A [ g o f ] )) ≈ (A [ FMap T g o FMap T f ]) ] - distr {T} = IsFunctor.distr ( isFunctor T ) + distr T = IsFunctor.distr ( isFunctor T ) nat : { c₁′ c₂′ ℓ′ : Level} (D : Category c₁′ c₂′ ℓ′) {a b : Obj D} {f : Hom D a b} {F G : Functor D A } → (η : NTrans D A F G ) @@ -281,25 +281,29 @@ ( m : Monad A T η μ ) ( k : Kleisli A T η μ m) → A [ join k d h (join k c g f) ≈ join k d ( join k d h g) f ] -Lemma9 A T η μ a b c d f g h m k = - begin +Lemma9 A T η μ a b c d f g h m k = + begin join k d h (join k c g f) ≈⟨ refl-hom ⟩ join k d h ( A [ Trans μ c o A [ FMap T g o f ] ] ) ≈⟨ refl-hom ⟩ A [ Trans μ d o A [ FMap T h o A [ Trans μ c o A [ FMap T g o f ] ] ] ] ≈⟨ {!!} ⟩ +-- ≈⟨ cdr-eq ( Trans μ d ) ( nat A μ) ⟩ + A [ A [ A [ Trans μ d o Trans μ ( FObj T d) ] o FMap T ( A [ FMap T h o g ] ) ] o f ] + ≈⟨ ⟩ + A [ A [ A [ Trans μ d o FMap T ( Trans μ d) ] o FMap T ( A [ FMap T h o g ] ) ] o f ] + ≈⟨ car-eq f (sym assoc) ⟩ + A [ A [ Trans μ d o A [ FMap T ( Trans μ d ) o FMap T ( A [ FMap T h o g ] ) ] ] o f ] + ≈⟨ sym assoc ⟩ A [ Trans μ d o A [ A [ FMap T ( Trans μ d ) o FMap T ( A [ FMap T h o g ] ) ] o f ] ] - ≈⟨ cdr-eq ( Trans μ d ) ( car-eq f (( sym ( distr ( sym ))))) ⟩ + ≈⟨ cdr-eq ( Trans μ d ) ( car-eq f ( sym ( distr T ))) ⟩ A [ Trans μ d o A [ FMap T ( A [ ( Trans μ d ) o A [ FMap T h o g ] ] ) o f ] ] ≈⟨ refl-hom ⟩ join k d ( A [ Trans μ d o A [ FMap T h o g ] ] ) f ≈⟨ refl-hom ⟩ join k d ( join k d h g) f - ∎ where - open ≈-Reasoning (A) - - + ∎ where open ≈-Reasoning (A)