Mercurial > hg > Members > kono > Proof > category
changeset 386:1e136aaad5cb
dead end
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 14 Mar 2016 17:44:45 +0900 |
parents | ff3803fc0c8a |
children | 2f59c2db9d98 |
files | limit-to.agda |
diffstat | 1 files changed, 15 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/limit-to.agda Mon Mar 14 14:53:54 2016 +0900 +++ b/limit-to.agda Mon Mar 14 17:44:45 2016 +0900 @@ -84,6 +84,8 @@ twocomp : {ℓ : Level } -> Maybe (Arrow {ℓ }) -> Maybe (Arrow {ℓ }) -> Maybe (Arrow {ℓ } ) twocomp (just arrow-f) (just id-t0) = just arrow-f twocomp (just arrow-g) (just id-t0) = just arrow-g +twocomp (just id-t1) (just arrow-f) = just arrow-f +twocomp (just id-t1) (just arrow-g) = just arrow-g twocomp (just id-t0) (just id-t0) = just id-t0 twocomp (just id-t1) (just id-t1) = just id-t1 twocomp _ _ = nothing @@ -133,11 +135,20 @@ open import Relation.Binary.PropositionalEquality ≡-cong = Relation.Binary.PropositionalEquality.cong identityL : {A B : TwoObject} {f : Two-Hom A B} → Map ( Two-id B × f ) ≡ Map f - identityL {a} {b} {f} = let open ≡-Reasoning in + identityL {a} {b} {f} with Map f + identityL {t0} {t0} {f} | nothing = refl + identityL {t0} {t1} {f} | nothing = refl + identityL {t1} {t0} {f} | nothing = refl + identityL {t1} {t1} {f} | nothing = refl + identityL {t1} {t1} {f} | just id-t1 = refl + identityL {t0} {t1} {f} | just arrow-f = refl + identityL {t0} {t1} {f} | just arrow-g = refl + identityL {t0} {t0} {f} | just id-t0 = refl + identityL {a} {b} {f} | just fa = let open ≡-Reasoning in begin - {!!} + RawMap (arrow2hom a b (twocomp (RawMap (hom (Two-id b))) (just fa))) ≡⟨ {!!} ⟩ - {!!} + just fa ∎ identityR : {A B : TwoObject} {f : Two-Hom A B} → Map ( f × Two-id A ) ≡ Map f identityR {a} {b} {f} = let open ≡-Reasoning in @@ -185,7 +196,7 @@ fmap {t1} {t1} x | just id-t1 = id1 A b fmap {_} {_} x | _ = {!!} identity : {x : Obj I} → A [ fmap (id1 I x) ≈ id1 A (fobj x) ] - identity = {!!} + identity = {!!} distr : {a₁ : Obj I} {b₁ : Obj I} {c : Obj I} {f₁ : Hom I a₁ b₁} {g₁ : Hom I b₁ c} → A [ fmap (I [ g₁ o f₁ ]) ≈ A [ fmap g₁ o fmap f₁ ] ] distr {a₁} {b₁} {c} {f₁} {g₁} = {!!} ≈-cong : {a : Obj I} {b : Obj I} {f g : Hom I a b} → I [ f ≈ g ] → A [ fmap f ≈ fmap g ]