Mercurial > hg > Members > kono > Proof > category
changeset 790:1e7319868d77
Sets is CCC
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 19 Apr 2019 23:42:19 +0900 |
parents | 4e1e2f7199c8 |
children | 376c07159acf |
files | CCChom.agda |
diffstat | 1 files changed, 77 insertions(+), 1 deletions(-) [+] |
line wrap: on
line diff
--- a/CCChom.agda Fri Apr 19 19:20:04 2019 +0900 +++ b/CCChom.agda Fri Apr 19 23:42:19 2019 +0900 @@ -6,7 +6,7 @@ open import cat-utility open import Data.Product renaming (_×_ to _∧_) open import Category.Constructions.Product -open import Relation.Binary.PropositionalEquality +open import Relation.Binary.PropositionalEquality hiding ( [_] ) open Functor @@ -314,5 +314,81 @@ *-cong : {a b c : Obj A} {f f' : Hom A (a /\ b) c} → A [ f ≈ f' ] → A [ f * ≈ f' * ] *-cong eq = cong← ( ccc-3 (isCCChom h )) eq +open import Category.Sets + +postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ + +data One' {l : Level} : Set l where + OneObj' : One' -- () in Haskell ( or any one object set ) + +sets : {l : Level } → CCC (Sets {l}) +sets {l} = record { + 1 = One' + ; ○ = λ _ → λ _ → OneObj' + ; _∧_ = _/\_ + ; <_,_> = <,> + ; π = π + ; π' = π' + ; _<=_ = _<=_ + ; _* = _* + ; ε = ε + ; isCCC = isCCC + } where + 1 : Obj Sets + 1 = One' + ○ : (a : Obj Sets ) → Hom Sets a 1 + ○ a = λ _ → OneObj' + _/\_ : Obj Sets → Obj Sets → Obj Sets + _/\_ a b = a ∧ b + <,> : {a b c : Obj Sets } → Hom Sets c a → Hom Sets c b → Hom Sets c ( a /\ b) + <,> f g = λ x → ( f x , g x ) + π : {a b : Obj Sets } → Hom Sets (a /\ b) a + π {a} {b} = proj₁ + π' : {a b : Obj Sets } → Hom Sets (a /\ b) b + π' {a} {b} = proj₂ + _<=_ : (a b : Obj Sets ) → Obj Sets + a <= b = b → a + _* : {a b c : Obj Sets } → Hom Sets (a /\ b) c → Hom Sets a (c <= b) + f * = λ x → λ y → f ( x , y ) + ε : {a b : Obj Sets } → Hom Sets ((a <= b ) /\ b) a + ε {a} {b} = λ x → ( proj₁ x ) ( proj₂ x ) + isCCC : CCC.IsCCC Sets 1 ○ _/\_ <,> π π' _<=_ _* ε + isCCC = record { + e2 = e2 + ; e3a = λ {a} {b} {c} {f} {g} → e3a {a} {b} {c} {f} {g} + ; e3b = λ {a} {b} {c} {f} {g} → e3b {a} {b} {c} {f} {g} + ; e3c = e3c + ; π-cong = π-cong + ; e4a = e4a + ; e4b = e4b + ; *-cong = *-cong + } where + e2 : {a : Obj Sets} (f : Hom Sets a 1) → Sets [ f ≈ ○ a ] + e2 {a} f = extensionality Sets ( λ x → e20 x ) + where + e20 : (x : a ) → f x ≡ ○ a x + e20 x with f x + e20 x | OneObj' = refl + e3a : {a b c : Obj Sets} {f : Hom Sets c a} {g : Hom Sets c b} → + Sets [ ( Sets [ π o ( <,> f g) ] ) ≈ f ] + e3a = refl + e3b : {a b c : Obj Sets} {f : Hom Sets c a} {g : Hom Sets c b} → + Sets [ Sets [ π' o ( <,> f g ) ] ≈ g ] + e3b = refl + e3c : {a b c : Obj Sets} {h : Hom Sets c (a /\ b)} → + Sets [ <,> (Sets [ π o h ]) (Sets [ π' o h ]) ≈ h ] + e3c = refl + π-cong : {a b c : Obj Sets} {f f' : Hom Sets c a} {g g' : Hom Sets c b} → + Sets [ f ≈ f' ] → Sets [ g ≈ g' ] → Sets [ <,> f g ≈ <,> f' g' ] + π-cong refl refl = refl + e4a : {a b c : Obj Sets} {h : Hom Sets (c /\ b) a} → + Sets [ Sets [ ε o <,> (Sets [ h * o π ]) π' ] ≈ h ] + e4a = refl + e4b : {a b c : Obj Sets} {k : Hom Sets c (a <= b)} → + Sets [ (Sets [ ε o <,> (Sets [ k o π ]) π' ]) * ≈ k ] + e4b = refl + *-cong : {a b c : Obj Sets} {f f' : Hom Sets (a /\ b) c} → + Sets [ f ≈ f' ] → Sets [ f * ≈ f' * ] + *-cong refl = refl