Mercurial > hg > Members > kono > Proof > category
changeset 340:1ff7b85e5bb2
ditr on system T
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 29 Mar 2014 23:12:12 +0900 |
parents | 716f85bc7259 |
children | 33bc037319fa |
files | system-t.agda |
diffstat | 1 files changed, 5 insertions(+), 5 deletions(-) [+] |
line wrap: on
line diff
--- a/system-t.agda Sat Mar 29 23:00:22 2014 +0900 +++ b/system-t.agda Sat Mar 29 23:12:12 2014 +0900 @@ -228,8 +228,8 @@ ∎ -lemma15assoc' : (y z w : Int) -> sum (mul y z) ( mul w z ) ≡ mul (sum y w) z -lemma15assoc' y zero w = let open ≡-Reasoning in +lemma15distr : (y z w : Int) -> sum (mul y z) ( mul w z ) ≡ mul (sum y w) z +lemma15distr y zero w = let open ≡-Reasoning in begin sum (mul y zero) ( mul w zero ) ≡⟨ cong ( \t -> sum (mul y zero ) t ) (lemma15 w zero ) ⟩ @@ -241,7 +241,7 @@ ≡⟨ lemma15 zero (sum y w) ⟩ mul (sum y w) zero ∎ -lemma15assoc' y (S z) w = let open ≡-Reasoning in +lemma15distr y (S z) w = let open ≡-Reasoning in begin sum (mul y (S z)) ( mul w (S z) ) ≡⟨ cong ( \t -> sum t ( mul w (S z ))) (lemma15'' y z) ⟩ @@ -256,7 +256,7 @@ sum y ( sum w (sum ( mul w z) ( mul y z)) ) ≡⟨ cong ( \t -> sum y (sum w t) ) ( lemma14sym (mul w z) (mul y z )) ⟩ sum y ( sum w (sum ( mul y z) ( mul w z)) ) - ≡⟨ cong ( \t -> sum y (sum w t) ) ( lemma15assoc' y z w ) ⟩ + ≡⟨ cong ( \t -> sum y (sum w t) ) ( lemma15distr y z w ) ⟩ sum y ( sum w (mul (sum y w) z) ) ≡⟨ lemma16assoc y w (mul (sum y w) z) ⟩ sum (sum y w) ( mul (sum y w) z ) @@ -274,7 +274,7 @@ sum (mul y z) ( mul x ( mul y z ) ) ≡⟨ cong (\t -> sum (mul y z) t ) (lemma15assoc x y z ) ⟩ sum (mul y z) ( mul ( mul x y) z ) - ≡⟨ lemma15assoc' y z (mul x y) ⟩ + ≡⟨ lemma15distr y z (mul x y) ⟩ mul (sum y (mul x y)) z ≡⟨⟩ mul (mul (S x) y) z