Mercurial > hg > Members > kono > Proof > category
changeset 114:2032c438b6a6
EM Category constructed
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 01 Aug 2013 02:50:28 +0900 |
parents | 239fa20251ec |
children | 17e69b05bc5e |
files | em-category.agda |
diffstat | 1 files changed, 29 insertions(+), 40 deletions(-) [+] |
line wrap: on
line diff
--- a/em-category.agda Thu Aug 01 01:45:17 2013 +0900 +++ b/em-category.agda Thu Aug 01 02:50:28 2013 +0900 @@ -31,33 +31,27 @@ -- open Functor open NTrans -record IsEMObj (a : Obj A) (φ : Hom A (FObj T a) a ) : Set (c₁ ⊔ c₂ ⊔ ℓ) where + +record IsAlgebra {a : Obj A} { phi : Hom A (FObj T a) a } : Set (c₁ ⊔ c₂ ⊔ ℓ) where field - identity : A [ A [ φ o TMap η a ] ≈ id1 A a ] - eval : A [ A [ φ o TMap μ a ] ≈ A [ φ o FMap T φ ] ] -open IsEMObj + identity : A [ A [ phi o TMap η a ] ≈ id1 A a ] + eval : A [ A [ phi o TMap μ a ] ≈ A [ phi o FMap T phi ] ] record EMObj : Set (c₁ ⊔ c₂ ⊔ ℓ) where field - a : Obj A - phi : Hom A (FObj T a) a - isEMObj : IsEMObj a phi + a : Obj A + phi : Hom A (FObj T a) a + isAlgebra : IsAlgebra {a} {phi} obj : Obj A obj = a φ : Hom A (FObj T a) a φ = phi open EMObj -record IsEMHom {x y : Obj A} {φ : Hom A (FObj T x) x } {φ' : Hom A (FObj T y) y } - (α : Hom A x y) : Set ℓ where - field - homomorphism : A [ A [ φ' o FMap T α ] ≈ A [ α o φ ] ] -open IsEMHom - record Eilenberg-Moore-Hom (a : EMObj ) (b : EMObj ) : Set (c₁ ⊔ c₂ ⊔ ℓ) where field EMap : Hom A (obj a) (obj b) - isEMHom : IsEMHom {obj a} {obj b} {φ a} {φ b} EMap + homomorphism : A [ A [ (φ b) o FMap T EMap ] ≈ A [ EMap o (φ a) ] ] open Eilenberg-Moore-Hom EMHom : (a : EMObj ) (b : EMObj ) -> Set (c₁ ⊔ c₂ ⊔ ℓ) @@ -78,7 +72,7 @@ EM-id : { a : EMObj } -> EMHom a a EM-id {a} = record { EMap = id1 A (obj a); - isEMHom = record { homomorphism = Lemma-EM1 {obj a} {phi a} a } } + homomorphism = Lemma-EM1 {obj a} {phi a} a } open import Relation.Binary.Core @@ -97,36 +91,28 @@ φ c o ( FMap T (EMap g) o FMap T (EMap f) ) ≈⟨ assoc ⟩ ( φ c o FMap T (EMap g)) o FMap T (EMap f) - ≈⟨ car (IsEMHom.homomorphism (isEMHom g)) ⟩ + ≈⟨ car (homomorphism (g)) ⟩ ( EMap g o φ b) o FMap T (EMap f) ≈⟨ sym assoc ⟩ EMap g o (φ b o FMap T (EMap f) ) - ≈⟨ cdr (IsEMHom.homomorphism (isEMHom f)) ⟩ + ≈⟨ cdr (homomorphism (f)) ⟩ EMap g o (EMap f o φ a) ≈⟨ assoc ⟩ ( (EMap g) o (EMap f) ) o φ a ∎ -_*_ : {a : EMObj } {b : EMObj } {c : EMObj } - (g : EMHom b c ) (f : EMHom a b) -> (EMHom a c) -_*_ {a} {b} {c} g f = record { EMap = A [ EMap g o EMap f ] ; isEMHom = record { homomorphism = - Lemma-EM2 a b c g f } } +_∙_ : {a b c : EMObj } -> EMHom b c -> EMHom a b -> EMHom a c +_∙_ {a} {b} {c} g f = record { homomorphism = Lemma-EM2 a b c g f } -_∙_ : {a b c : EMObj } -> EMHom b c -> EMHom a b -> EMHom a c -_∙_ {a} {b} {c} g f = record { isEMHom = record { homomorphism = Lemma-EM2 a b c g f } } - -_≗_ : {a : EMObj } {b : EMObj } - (f : EMHom a b ) - (g : EMHom a b ) -> Set ℓ +_≗_ : {a : EMObj } {b : EMObj } (f g : EMHom a b ) -> Set ℓ _≗_ f g = A [ EMap f ≈ EMap g ] - isEilenberg-MooreCategory : IsCategory EMObj EMHom _≗_ _∙_ EM-id isEilenberg-MooreCategory = record { isEquivalence = isEquivalence - ; identityL = EMidL - ; identityR = EMidR - ; o-resp-≈ = EMo-resp - ; associative = EMassoc + ; identityL = IsCategory.identityL (Category.isCategory A) + ; identityR = IsCategory.identityR (Category.isCategory A) + ; o-resp-≈ = IsCategory.o-resp-≈ (Category.isCategory A) + ; associative = IsCategory.associative (Category.isCategory A) } where open ≈-Reasoning (A) @@ -137,16 +123,19 @@ ; sym = sym ; trans = trans-hom } - EMidL : {C D : EMObj} -> {f : EMHom C D} → (EM-id {D} ∙ f) ≗ f - EMidL {a} {b} {f} = idL - EMidR : {C D : EMObj} -> {f : EMHom C D} → (f ∙ EM-id {C}) ≗ f - EMidR {_} {_} {f} = idR - EMo-resp : {a b c : EMObj} -> {f g : EMHom a b } → {h i : EMHom b c } → +-- +-- cannot use as identityL = EMidL +-- +EMidL : {C D : EMObj} -> {f : EMHom C D} → (EM-id ∙ f) ≗ f +EMidL {C} {D} {f} = let open ≈-Reasoning (A) in idL {obj D} +EMidR : {C D : EMObj} -> {f : EMHom C D} → (f ∙ EM-id) ≗ f +EMidR {C} {_} {_} = let open ≈-Reasoning (A) in idR {obj C} +EMo-resp : {a b c : EMObj} -> {f g : EMHom a b } → {h i : EMHom b c } → f ≗ g → h ≗ i → (h ∙ f) ≗ (i ∙ g) - EMo-resp {a} {b} {c} {f} {g} {h} {i} = ( IsCategory.o-resp-≈ (Category.isCategory A) ) - EMassoc : {a b c d : EMObj} -> {f : EMHom c d } → {g : EMHom b c } → {h : EMHom a b } → +EMo-resp {a} {b} {c} {f} {g} {h} {i} = ( IsCategory.o-resp-≈ (Category.isCategory A) ) +EMassoc : {a b c d : EMObj} -> {f : EMHom c d } → {g : EMHom b c } → {h : EMHom a b } → (f ∙ (g ∙ h)) ≗ ((f ∙ g) ∙ h) - EMassoc {_} {_} {_} {_} {f} {g} {h} = ( IsCategory.associative (Category.isCategory A) ) +EMassoc {_} {_} {_} {_} {f} {g} {h} = ( IsCategory.associative (Category.isCategory A) ) Eilenberg-MooreCategory : Category (c₁ ⊔ c₂ ⊔ ℓ) (c₁ ⊔ c₂ ⊔ ℓ) ℓ Eilenberg-MooreCategory =