changeset 679:20bdd2f5f708

...
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 05 Nov 2017 16:33:37 +0900
parents 867ea41b331c
children 5d894993477f
files pullback.agda
diffstat 1 files changed, 32 insertions(+), 21 deletions(-) [+]
line wrap: on
line diff
--- a/pullback.agda	Sun Nov 05 13:22:59 2017 +0900
+++ b/pullback.agda	Sun Nov 05 16:33:37 2017 +0900
@@ -409,34 +409,45 @@
          equ = isEqualizer  ( equ-ε prod eqa )
          proj = pi ( prod  (FObj Γ) )
          prodΓ = isIProduct ( prod (FObj Γ) ) 
-         open import Relation.Binary.Core
-         import Relation.Binary.PropositionalEquality
-         postulate extensionality : {c : Level} {U : Set c} {x y  : Obj A } {f g : U  → Hom A x y } → ( ∀ (u : U)  → A [ f u ≈  g u ] ) → ( λ u → f u ) ≡ ( λ u → g u ) 
-         comm : (a : Obj A) → (t : NTrans I A (K A I a) Γ ) →
-            A [ A [ iproduct (isIProduct (prod Fcod)) (λ u → A [ FMap Γ (hom u) o pi (prod (FObj Γ)) (hom-j u) ])
-                  o iproduct prodΓ (TMap t) ]
-              ≈ A [ iproduct (isIProduct (prod Fcod)) (λ u → pi (prod (FObj Γ)) (hom-k u))
-                  o iproduct prodΓ (TMap t) ] ]
-         comm a t = let  open ≈-Reasoning (A) in begin
-                  iproduct (isIProduct (prod Fcod)) (λ u → ( FMap Γ (hom u) o pi (prod (FObj Γ)) (hom-j u))) o iproduct prodΓ (TMap t) 
-                ≈⟨ car ( ip-cong (isIProduct (prod Fcod)) ( extensionality  ( λ u →   begin
-                        FMap Γ (hom u) o pi (prod (FObj Γ)) (hom-j u)
-                     ≈⟨ ? ⟩
-                        pi (prod (FObj Γ)) (hom-k u)
-                     ∎
-                    ))) ⟩
-                  iproduct (isIProduct (prod Fcod)) (λ u → pi (prod (FObj Γ)) (hom-k u)) o iproduct prodΓ (TMap t) 
+         f : Hom A p0 (iprod (prod Fcod))
+         f =  (iproduct (isIProduct (prod Fcod)) (λ u → pi (prod (FObj Γ)) (hom-k u )))
+         g : Hom A p0 (iprod (prod Fcod))
+         g =  (iproduct (isIProduct (prod Fcod)) (λ u → A [ FMap Γ (hom u) o pi (prod (FObj Γ)) (hom-j u ) ] ))
+         comm1 : (a : Obj A) → (t : NTrans I A (K A I a) Γ ) → (u : homprod)
+            → A [ A [ FMap Γ (hom u) o pi (prod (FObj Γ)) (hom-j u) ] ≈ pi (prod (FObj Γ)) (hom-k u) ]
+         comm1 a t u = let  open ≈-Reasoning (A) in begin
+                   FMap Γ (hom u) o pi (prod (FObj Γ)) (hom-j u) 
+                ≈⟨ {!!} ⟩
+                   FMap Γ (hom u) o ( TMap t (hom-j u) o {!!} )
+                ≈⟨ assoc ⟩
+                   (FMap Γ (hom u) o  TMap t (hom-j u) ) o {!!} 
+                ≈⟨ car (IsNTrans.commute (isNTrans t )) ⟩
+                   (TMap t  (hom-k u) o id1 A a ) o {!!}
+                ≈⟨ car idR ⟩
+                   TMap t  (hom-k u)  o {!!}
+                ≈⟨ {!!} ⟩
+                   pi (prod (FObj Γ)) (hom-k u) 
+                ∎
+         comm2 : (a : Obj A) → (t : NTrans I A (K A I a) Γ ) → (u : homprod {c₁} )
+            → A [ A [ FMap Γ (hom u) o TMap t (hom-j u) ] ≈ A [ TMap t  (hom-k u) o id1 A a ] ]
+         comm2 a t u = IsNTrans.commute (isNTrans t )
+         fh=gh : (a : Obj A) → (t : NTrans I A (K A I a) Γ ) →
+            A [ A [ g o iproduct prodΓ (TMap t) ] ≈ A [ f o iproduct prodΓ (TMap t) ] ]
+         fh=gh a t = let  open ≈-Reasoning (A) in begin
+                  g o iproduct prodΓ (TMap t) 
+                ≈⟨ car ( ip-cong (isIProduct (prod Fcod)) (comm1 a t ) ) ⟩
+                  f o iproduct prodΓ (TMap t) 

          limit1 :  (a : Obj A) → NTrans I A (K A I a) Γ → Hom A a lim
-         limit1 a t = let  open ≈-Reasoning (A) in k equ (iproduct prodΓ (TMap t) ) ( comm a t )
+         limit1 a t =  k equ (iproduct prodΓ (TMap t) ) ( fh=gh a t )
          t0f=t1 :  {a : Obj A} {t : NTrans I A (K A I a) Γ} {i : Obj I} →
                 A [ A [ TMap (limit-ε prod eqa ) i o limit1 a t ] ≈ TMap t i ]
          t0f=t1 {a} {t} {i} = let  open ≈-Reasoning (A) in begin
                    TMap (limit-ε prod eqa ) i o limit1 a t 
                 ≈⟨⟩
-                   ( ( proj i )  o e ) o  k equ (iproduct prodΓ (TMap t) ) (comm a t)
+                   ( ( proj i )  o e ) o  k equ (iproduct prodΓ (TMap t) ) (fh=gh a t)
                 ≈↑⟨ assoc  ⟩
-                    proj i  o ( e  o  k equ (iproduct prodΓ (TMap t) ) (comm a t ) )
+                    proj i  o ( e  o  k equ (iproduct prodΓ (TMap t) ) (fh=gh a t ) )
                 ≈⟨ cdr ( ek=h equ) ⟩
                     proj i  o iproduct prodΓ (TMap t)
                 ≈⟨ pif=q prodΓ ⟩
@@ -448,7 +459,7 @@
          limit-uniqueness1 {a} {t} {f} lim=t = let  open ≈-Reasoning (A) in begin
                     limit1 a t
                 ≈⟨⟩
-                    k equ (iproduct prodΓ (TMap t) ) (comm a t)
+                    k equ (iproduct prodΓ (TMap t) ) (fh=gh a t)
                 ≈⟨ IsEqualizer.uniqueness  equ ( begin
                       e o f 
                 ≈↑⟨ ip-uniqueness prodΓ ⟩