Mercurial > hg > Members > kono > Proof > category
changeset 207:22811f7a04e1
Equalizer problems have written
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 02 Sep 2013 16:54:02 +0900 |
parents | 3a5e2a22e053 |
children | a1e5d2a3d3bd |
files | equalizer.agda |
diffstat | 1 files changed, 24 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/equalizer.agda Mon Sep 02 00:12:32 2013 +0900 +++ b/equalizer.agda Mon Sep 02 16:54:02 2013 +0900 @@ -21,7 +21,7 @@ open import HomReasoning open import cat-utility -record Equalizer { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } {a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where +record Equalizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where field equalizer : {c d : Obj A} (f' : Hom A c a) (g' : Hom A d a) → Hom A c d equalize : {c d : Obj A} (f' : Hom A c a) (g' : Hom A d a) → @@ -29,14 +29,27 @@ uniqueness : {c d : Obj A} (f' : Hom A c a) (g' : Hom A d a) ( e : Hom A c d ) → A [ A [ f o f' ] ≈ A [ A [ g o g' ] o e ] ] → A [ e ≈ equalizer f' g' ] -record EqEqualizer { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } {a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where +record EqEqualizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where field - α : {d a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → Hom A d a - γ : {d c : Obj A} → (f : Hom A c b) → (g : Hom A c b ) → (h : Hom A d c ) → Hom A d c - δ : {a b : Obj A} → (f : Hom A a b) → Hom A a a - β : {c a b d : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A c d ) → Hom A c a - b1 : {c : Obj A} → A [ A [ f o α {c} f g ] ≈ A [ g o α {c} f g ] ] - b2 : {c d : Obj A } → {h : Hom A d a } → A [ A [ α f g o γ f g h ] ≈ A [ h o α (A [ f o h ]) (A [ g o h ]) ] ] - b3 : A [ A [ α f f o δ f ] ≈ id1 A a ] - b4 : {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o k ] ) ≈ k ] - b5 : {c d : Obj A } → {h : Hom A d a } → A [ β f g h ≈ A [ γ f g h o δ (A [ f o h ]) ] ] + α : {e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → Hom A e a + γ : {c d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A c e + δ : {e a b : Obj A} → (f : Hom A a b) → Hom A a e + b1 : {e : Obj A} → A [ A [ f o α {e} f g ] ≈ A [ g o α {e} f g ] ] + b2 : {c d : Obj A } → {h : Hom A d a } → A [ A [ α {c} f g o γ {c} f g h ] ≈ A [ h o α (A [ f o h ]) (A [ g o h ]) ] ] + b3 : {e : Obj A} → A [ A [ α {e} f f o δ {e} f ] ≈ id1 A a ] + -- b4 : {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o k ] ) ≈ k ] + b4 : {c d : Obj A } {k : Hom A c a} → A [ A [ γ f g ( A [ α f g o k ] ) o δ {c} (A [ f o A [ α f g o k ] ] ) ] ≈ k ] + -- A [ α f g o β f g h ] ≈ h + β : { d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A d e + β {d} f g h = A [ γ f g h o δ {d} (A [ f o h ]) ] + +lemma-equ1 : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b : Obj A} (f g : Hom A a b) → Equalizer A f g → EqEqualizer A f g +lemma-equ1 A {a} {b} f g eqa = record { + α = {!!} ; + γ = {!!} ; + δ = {!!} ; + b1 = {!!} ; + b2 = {!!} ; + b3 = {!!} ; + b4 = {!!} + }