Mercurial > hg > Members > kono > Proof > category
changeset 540:2373c11a93f1
on going ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 31 Mar 2017 08:49:10 +0900 |
parents | 9a657775d81e |
children | 505962017fd1 |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 28 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Fri Mar 31 08:11:46 2017 +0900 +++ b/SetsCompleteness.agda Fri Mar 31 08:49:10 2017 +0900 @@ -152,9 +152,9 @@ record Small { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where field - shom→ : {i j : Obj C } → Hom C i j → I - shom← : {i j : Obj C } → ( f : I ) → Hom C i j - shom-iso : {i j : Obj C } → { f : Hom C i j } → shom← ( shom→ f ) ≡ f + hom→ : {i j : Obj C } → Hom C i j → I + hom← : {i j : Obj C } → ( f : I ) → Hom C i j + hom-iso : {i j : Obj C } → { f : Hom C i j } → hom← ( hom→ f ) ≡ f -- ≈-≡ : {a b : Obj C } { x y : Hom C a b } → (x≈y : C [ x ≈ y ] ) → x ≡ y open Small @@ -165,7 +165,7 @@ ΓMap : { c₁ c₂ ℓ : Level} { C : Category c₁ c₂ ℓ } { I : Set c₁ } ( s : Small C I ) ( Γ : Functor C ( Sets { c₁} )) {i j : Obj C } → ( f : I ) → ΓObj s Γ i → ΓObj s Γ j -ΓMap s Γ {i} {j} f = FMap Γ ( shom← s f ) +ΓMap s Γ {i} {j} f = FMap Γ ( hom← s f ) record snat { c₂ } { I OC : Set c₂ } ( sobj : OC → Set c₂ ) ( smap : { i j : OC } → (f : I )→ sobj i → sobj j ) : Set c₂ where @@ -190,11 +190,11 @@ Sets [ (λ sn → (snmap sn b)) o FMap (K Sets C (snat (ΓObj s Γ) (ΓMap s Γ))) f ] ] comm1 {a} {b} {f} = extensionality Sets ( λ sn → begin FMap Γ f (snmap sn a ) - ≡⟨ ≡cong ( λ f → ( FMap Γ f (snmap sn a ))) (sym ( shom-iso s )) ⟩ - FMap Γ ( shom← s ( shom→ s f)) (snmap sn a ) + ≡⟨ ≡cong ( λ f → ( FMap Γ f (snmap sn a ))) (sym ( hom-iso s )) ⟩ + FMap Γ ( hom← s ( hom→ s f)) (snmap sn a ) ≡⟨⟩ - ΓMap s Γ (shom→ s f) (snmap sn a ) - ≡⟨ sncommute sn (shom→ s f) ⟩ + ΓMap s Γ (hom→ s f) (snmap sn a ) + ≡⟨ sncommute sn (hom→ s f) ⟩ snmap sn b ∎ ) where open import Relation.Binary.PropositionalEquality @@ -222,10 +222,28 @@ limit1 a t = λ x → record { snmap = λ i → ( TMap t i ) x ; sncommute = λ f → comm2 t f } t0f=t : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o limit1 a t ] ≈ TMap t i ] - t0f=t = {!!} + t0f=t {a} {t} {i} = extensionality Sets ( λ x → begin + ( Sets [ TMap (Cone C I s Γ) i o limit1 a t ]) x + -- ≡⟨⟩ + -- snmap ( record { snmap = λ i → ( TMap t i ) x ; sncommute = λ {i j} f → comm2 {a} {x} {i} {j} t f } ) i + ≡⟨⟩ + TMap t i x + ∎ ) where + open import Relation.Binary.PropositionalEquality + open ≡-Reasoning limit-uniqueness : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {f : Hom Sets a (snat (ΓObj s Γ) (ΓMap s Γ))} → ({i : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o f ] ≈ TMap t i ]) → Sets [ limit1 a t ≈ f ] - limit-uniqueness = {!!} + limit-uniqueness {a} {t} {f} cif=t = extensionality Sets ( λ x → begin + limit1 a t x + ≡⟨⟩ + record { snmap = λ i → ( TMap t i ) x ; sncommute = λ f → comm2 t f } + ≡⟨ {!!} ⟩ + record { snmap = λ i → snmap (f x ) i ; sncommute = λ f → ? } + ≡⟨⟩ + f x + ∎ ) where + open import Relation.Binary.PropositionalEquality + open ≡-Reasoning