Mercurial > hg > Members > kono > Proof > category
changeset 937:2385fdd6818b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 15 May 2020 20:43:42 +0900 |
parents | d13e0981e667 |
children | 24248f9249c5 |
files | CCCGraph.agda |
diffstat | 1 files changed, 14 insertions(+), 7 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph.agda Fri May 15 20:10:09 2020 +0900 +++ b/CCCGraph.agda Fri May 15 20:43:42 2020 +0900 @@ -415,6 +415,9 @@ } where open forgetful open ccc-from-graph + -- + -- In our scheme, CAT/Cart/Grph does not allow different levels of objects, so we assume level conversion on Graph + -- -- η : Hom Grph a (FObj UX (F a)) -- f : edge g x y -----------------------------------> m21 (record {vertex = fobj (atom x) ; edge = fmap h }) : Graph -- Graph g x ----------------------> y : vertex g ↑ @@ -437,11 +440,6 @@ vm y = vmap (m21 fo) (ccc-from-graph.fobj a (atom y)) em : { x y : vertex a } (f : edge a x y ) → edge (FObj UX (F a)) (vm x) (vm y) em {x} {y} f = emap (m21 fo) (ccc-from-graph.fmap a (iv (arrow f) (id _))) - - -- k : ( y : vertex a) → Set (c₁ ⊔ c₂) - -- k y = ( e : vertex a ) → graphtocat.Chain a e y - -- mm : Graph {suc (c₁ ⊔ c₂)} {(c₁ ⊔ c₂)} - -- mm = forgetful.fobj {c₁} {c₂} (F a) pl : {c₁ c₂ : Level} → (g : Graph {c₁} {c₂} ) → Category _ _ _ pl g = PL g cobj : {g : Obj (Grph {c₁} {c₂} ) } {c : Obj Cart} → Hom Grph g (FObj UX c) → Objs g → Obj (cat c) @@ -459,6 +457,15 @@ c-map {g} {c} {a} {x ∧ y} f z = CCC.<_,_> (ccc c) (c-map f {!!}) (c-map f {!!}) c-map {g} {c} {d} {b <= a} f x = CCC._* (ccc c) ( c-map f {!!}) solution : {g : Obj Grph } {c : Obj Cart } → Hom Grph g (FObj UX c) → Hom Cart (F g) c - solution {g} {c} f = {!!} -- record { cmap = record { FObj = λ x → {!!} ; FMap = {!!} ; isFunctor = {!!} } ; ccf = {!!} } + solution {g} {c} f = record { cmap = record { + FObj = λ x → cobj {g} {c} f (xtog x) ; + FMap = λ {x} {y} h → c-map {g} {c} f (htop {x} {y} h ) ; + isFunctor = {!!} } ; + ccf = {!!} } where + xtog : Obj Sets → Objs g + xtog x = {!!} + htop : {x y : Set (c₁ ⊔ c₂) } → (x → y) → Hom (pl g) {!!} {!!} + htop = {!!} + fo : Graph {suc (c₁ ⊔ c₂)} {c₁ ⊔ c₂} + fo = forgetful.fobj {c₁} {c₂} c -