Mercurial > hg > Members > kono > Proof > category
changeset 113:239fa20251ec
field version
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 01 Aug 2013 01:45:17 +0900 |
parents | 5f8d6d1aece4 |
children | 2032c438b6a6 |
files | em-category.agda |
diffstat | 1 files changed, 41 insertions(+), 66 deletions(-) [+] |
line wrap: on
line diff
--- a/em-category.agda Wed Jul 31 23:53:36 2013 +0900 +++ b/em-category.agda Thu Aug 01 01:45:17 2013 +0900 @@ -37,40 +37,33 @@ eval : A [ A [ φ o TMap μ a ] ≈ A [ φ o FMap T φ ] ] open IsEMObj -record EMObj {a : Obj A} {φ : Hom A (FObj T a) a } : Set (c₁ ⊔ c₂ ⊔ ℓ) where +record EMObj : Set (c₁ ⊔ c₂ ⊔ ℓ) where + field + a : Obj A + phi : Hom A (FObj T a) a + isEMObj : IsEMObj a phi obj : Obj A obj = a - phi : Hom A (FObj T a) a - phi = φ - field - isEMObj : IsEMObj a φ + φ : Hom A (FObj T a) a + φ = phi open EMObj record IsEMHom {x y : Obj A} {φ : Hom A (FObj T x) x } {φ' : Hom A (FObj T y) y } - (α : Hom A x y) - (a : EMObj {x} {φ}) - (b : EMObj {y} {φ'}) : Set ℓ where + (α : Hom A x y) : Set ℓ where field homomorphism : A [ A [ φ' o FMap T α ] ≈ A [ α o φ ] ] open IsEMHom -record Eilenberg-Moore-Hom {x y : Obj A } - {φ : Hom A (FObj T x) x } - {φ' : Hom A (FObj T y) y } - {α : Hom A x y} - (a : EMObj {x} {φ}) - (b : EMObj {y} {φ'}) : Set (c₁ ⊔ c₂ ⊔ ℓ) where - EMap : Hom A x y - EMap = α +record Eilenberg-Moore-Hom (a : EMObj ) (b : EMObj ) : Set (c₁ ⊔ c₂ ⊔ ℓ) where field - isEMHom : IsEMHom {x} {y} {φ} {φ'} α a b + EMap : Hom A (obj a) (obj b) + isEMHom : IsEMHom {obj a} {obj b} {φ a} {φ b} EMap open Eilenberg-Moore-Hom -EMHom : {x y : Obj A} {φ : Hom A (FObj T x) x } {φ' : Hom A (FObj T y) y } {α : Hom A x y } - (a : EMObj {x} {φ} ) (b : EMObj {y} {φ'} ) -> Set (c₁ ⊔ c₂ ⊔ ℓ) -EMHom {x} {y} {φ} {φ'} {α} = \a b -> Eilenberg-Moore-Hom {x} {y} {φ} {φ'} {α} a b +EMHom : (a : EMObj ) (b : EMObj ) -> Set (c₁ ⊔ c₂ ⊔ ℓ) +EMHom = \a b -> Eilenberg-Moore-Hom a b -Lemma-EM1 : {x : Obj A} {φ : Hom A (FObj T x) x} (a : EMObj {x} {φ}) +Lemma-EM1 : {x : Obj A} {φ : Hom A (FObj T x) x} (a : EMObj ) -> A [ A [ φ o FMap T (id1 A x) ] ≈ A [ (id1 A x) o φ ] ] Lemma-EM1 {x} {φ} a = let open ≈-Reasoning (A) in begin @@ -83,66 +76,49 @@ (id1 A x) o φ ∎ -EM-id : { a : EMObj } -> EMHom {obj a} {obj a} {phi a} {phi a} {id1 A (obj a)} a a -EM-id {a} = record { +EM-id : { a : EMObj } -> EMHom a a +EM-id {a} = record { EMap = id1 A (obj a); isEMHom = record { homomorphism = Lemma-EM1 {obj a} {phi a} a } } open import Relation.Binary.Core -Lemma-EM2 : {x y z : Obj A} - {φ : Hom A (FObj T x) x} - {φ' : Hom A (FObj T y) y} - {φ'' : Hom A (FObj T z) z} - {α : Hom A x y} - {α' : Hom A y z} - (a : EMObj {x} {φ} ) - (b : EMObj {y} {φ'} ) - (c : EMObj {z} {φ''} ) - (g : EMHom {y} {z} {φ'} {φ''} {α'} b c ) - (f : EMHom {x} {y} {φ} {φ'} {α} a b) - -> A [ A [ φ'' o FMap T (A [ (EMap g) o (EMap f) ] ) ] - ≈ A [ (A [ (EMap g) o (EMap f) ]) o φ ] ] -Lemma-EM2 {_} {_} {_} {φ} {φ'} {φ''} _ _ _ g f = let +Lemma-EM2 : (a : EMObj ) + (b : EMObj ) + (c : EMObj ) + (g : EMHom b c) + (f : EMHom a b) + -> A [ A [ φ c o FMap T (A [ (EMap g) o (EMap f) ] ) ] + ≈ A [ (A [ (EMap g) o (EMap f) ]) o φ a ] ] +Lemma-EM2 a b c g f = let open ≈-Reasoning (A) in begin - φ'' o FMap T ((EMap g) o (EMap f)) + φ c o FMap T ((EMap g) o (EMap f)) ≈⟨ cdr (distr T) ⟩ - φ'' o ( FMap T (EMap g) o FMap T (EMap f) ) + φ c o ( FMap T (EMap g) o FMap T (EMap f) ) ≈⟨ assoc ⟩ - ( φ'' o FMap T (EMap g)) o FMap T (EMap f) + ( φ c o FMap T (EMap g)) o FMap T (EMap f) ≈⟨ car (IsEMHom.homomorphism (isEMHom g)) ⟩ - ( EMap g o φ') o FMap T (EMap f) + ( EMap g o φ b) o FMap T (EMap f) ≈⟨ sym assoc ⟩ - EMap g o (φ' o FMap T (EMap f) ) + EMap g o (φ b o FMap T (EMap f) ) ≈⟨ cdr (IsEMHom.homomorphism (isEMHom f)) ⟩ - EMap g o (EMap f o φ) + EMap g o (EMap f o φ a) ≈⟨ assoc ⟩ - ( (EMap g) o (EMap f) ) o φ + ( (EMap g) o (EMap f) ) o φ a ∎ -_*_ : {x y z : Obj A} - {φ : Hom A (FObj T x) x} - {φ' : Hom A (FObj T y) y} - {φ'' : Hom A (FObj T z) z} - {α : Hom A x y} - {α' : Hom A y z} - {a : EMObj {x} {φ} } - {b : EMObj {y} {φ'} } - {c : EMObj {z} {φ''} } - (g : EMHom {y} {z} {φ'} {φ''} {α'} b c ) - (f : EMHom {x} {y} {φ} {φ'} {α} a b) -> - (EMHom {x} {z} {φ} {φ''} {A [ α' o α ] } a c) -_*_ {x} {y} {z} {φ} {φ'} {φ''} {α} {α'} {a} {b} {c} g f = record { isEMHom = record { homomorphism = - Lemma-EM2 {x} {y} {z} {φ} {φ'} {φ''} {α} {α'} a b c g f } } +_*_ : {a : EMObj } {b : EMObj } {c : EMObj } + (g : EMHom b c ) (f : EMHom a b) -> (EMHom a c) +_*_ {a} {b} {c} g f = record { EMap = A [ EMap g o EMap f ] ; isEMHom = record { homomorphism = + Lemma-EM2 a b c g f } } _∙_ : {a b c : EMObj } -> EMHom b c -> EMHom a b -> EMHom a c _∙_ {a} {b} {c} g f = record { isEMHom = record { homomorphism = Lemma-EM2 a b c g f } } -_≗_ : {x y : Obj A} {φ : Hom A (FObj T x) x} {φ' : Hom A (FObj T y) y} {α α' : Hom A x y} - {a : EMObj {x} {φ} } {b : EMObj {y} {φ'}} - (f : EMHom {x} {y} {φ} {φ'} {α} a b ) - (g : EMHom {x} {y} {φ} {φ'} {α'} a b ) -> Set ℓ -_≗_ {_} {_} {_} {_} {α} {α'} f g = A [ α ≈ α' ] +_≗_ : {a : EMObj } {b : EMObj } + (f : EMHom a b ) + (g : EMHom a b ) -> Set ℓ +_≗_ f g = A [ EMap f ≈ EMap g ] isEilenberg-MooreCategory : IsCategory EMObj EMHom _≗_ _∙_ EM-id @@ -154,9 +130,8 @@ } where open ≈-Reasoning (A) - isEquivalence : {x y : Obj A} {φ : Hom A (FObj T x) x} {φ' : Hom A (FObj T y) y} {α α' : Hom A x y} - {a : EMObj {x} {φ} } {b : EMObj {y} {φ'}} -> - IsEquivalence {_} {_} {EMHom {x} {y} {φ} {φ'} {α} a b } _≗_ + isEquivalence : {a : EMObj } {b : EMObj } -> + IsEquivalence {_} {_} {EMHom a b } _≗_ isEquivalence {C} {D} = -- this is the same function as A's equivalence but has different types record { refl = refl-hom ; sym = sym