Mercurial > hg > Members > kono > Proof > category
changeset 938:24248f9249c5
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 16 May 2020 23:45:33 +0900 |
parents | 2385fdd6818b |
children | d918ab22419f |
files | CCCGraph.agda |
diffstat | 1 files changed, 37 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph.agda Fri May 15 20:43:42 2020 +0900 +++ b/CCCGraph.agda Sat May 16 23:45:33 2020 +0900 @@ -283,6 +283,19 @@ : ∀{X Y : vertex C} → edge C X Y → Set (c₁ ⊔ c₂ ) where mrefl : {g : edge C A B} → (eqv : f ≡ g ) → [ C ] f == g +eq-vertex1 : {c₁ c₂ : Level} (C : Graph {c₁} {c₂}) {A B : vertex C} {f : edge C A B} + {X Y : vertex C} → {g : edge C X Y } → ( [ C ] f == g ) → A ≡ X +eq-vertex1 _ (mrefl refl) = refl + +eq-vertex2 : {c₁ c₂ : Level} (C : Graph {c₁} {c₂}) {A B : vertex C} {f : edge C A B} + {X Y : vertex C} → {g : edge C X Y } → ( [ C ] f == g ) → B ≡ Y +eq-vertex2 _ (mrefl refl) = refl + +eq-edge : {c₁ c₂ : Level} (C : Graph {c₁} {c₂}) {A B : vertex C} {f : edge C A B} + {X Y : vertex C} → {g : edge C X Y } → ( [ C ] f == g ) → f ≅ g +eq-edge C eq with eq-vertex1 C eq | eq-vertex2 C eq +eq-edge C (mrefl refl) | refl | refl = refl + _=m=_ : {c₁ c₂ c₁' c₂' : Level} {C : Graph {c₁} {c₂} } {D : Graph {c₁'} {c₂'} } → (F G : GMap C D) → Set (c₁ ⊔ c₂ ⊔ c₁' ⊔ c₂') _=m=_ {C = C} {D = D} F G = ∀{A B : vertex C} → (f : edge C A B) → [ D ] emap F f == emap G f @@ -369,7 +382,14 @@ isFunctor UX = isf where isf : IsFunctor Cart Grph (λ z → g21 (fobj z)) fmap eff : (a : Obj Cart) (f : vertex (g21 (fobj a)) ) → edge (g21 (fobj a)) f f - eff a f = {!!} + eff a f with giso→ {fobj a} {_} {_} {id1 (cat a) (vmap (m12 (fobj a)) f )} (id1 (cat a) (vmap (m12 (fobj a)) f )) + ... | tt = subst₂ (λ j k → edge (g21 (fobj a)) j k ) {!!} {!!} m where + fuga : ? ≡ ? + fuga = eq-vertex1 (fobj a) tt + hoge : vmap (m21 (fobj a)) (vmap (m12 (fobj a)) f) ≡ f + hoge = eq-vertex1 (g21 (fobj a)) {!!} + m : edge (g21 (fobj a)) (vmap (m21 (fobj a)) (vmap (m12 (fobj a)) f )) (vmap (m21 (fobj a)) (vmap (m12 (fobj a)) f )) + m = emap (m21 (fobj a)) (id1 (cat a) _) IsFunctor.identity isf {a} {b} {f} = begin fmap (id1 Cart a) ≈⟨⟩ @@ -416,7 +436,6 @@ open forgetful open ccc-from-graph -- - -- In our scheme, CAT/Cart/Grph does not allow different levels of objects, so we assume level conversion on Graph -- -- η : Hom Grph a (FObj UX (F a)) -- f : edge g x y -----------------------------------> m21 (record {vertex = fobj (atom x) ; edge = fmap h }) : Graph @@ -443,7 +462,7 @@ pl : {c₁ c₂ : Level} → (g : Graph {c₁} {c₂} ) → Category _ _ _ pl g = PL g cobj : {g : Obj (Grph {c₁} {c₂} ) } {c : Obj Cart} → Hom Grph g (FObj UX c) → Objs g → Obj (cat c) - cobj {g} {c} f (atom x) = {!!} -- vmap f x + cobj {g} {c} f (atom x) = {!!} cobj {g} {c} f ⊤ = CCC.1 (ccc c) cobj {g} {c} f (x ∧ y) = CCC._∧_ (ccc c) (cobj {g} {c} f x) (cobj {g} {c} f y) cobj {g} {c} f (b <= a) = CCC._<=_ (ccc c) (cobj {g} {c} f b) (cobj {g} {c} f a) @@ -456,15 +475,29 @@ c-map {g} {c} {a} {⊤} f x = CCC.○ (ccc c) (cobj f a) c-map {g} {c} {a} {x ∧ y} f z = CCC.<_,_> (ccc c) (c-map f {!!}) (c-map f {!!}) c-map {g} {c} {d} {b <= a} f x = CCC._* (ccc c) ( c-map f {!!}) + SG : (g : Graph {c₁} {c₂}) → Functor (Sets {c₁ ⊔ c₂}) (ccc-from-graph.PL g) + SG g = record { + FObj = λ x → ccc-from-graph.atom {!!} ; + FMap = λ f → ccc-from-graph.iv ( ccc-from-graph.arrow {!!}) (ccc-from-graph.id _) ; + isFunctor = record { + identity = {!!} ; + distr = {!!} ; + ≈-cong = {!!} + } + } solution : {g : Obj Grph } {c : Obj Cart } → Hom Grph g (FObj UX c) → Hom Cart (F g) c solution {g} {c} f = record { cmap = record { FObj = λ x → cobj {g} {c} f (xtog x) ; FMap = λ {x} {y} h → c-map {g} {c} f (htop {x} {y} h ) ; isFunctor = {!!} } ; ccf = {!!} } where + mp : GMap (FObj UX c) (forgetful.fobj c) + mp = record { vmap = {!!} ; emap = {!!} } + mm : Hom Grph g (forgetful.fobj c) + mm = mp & f xtog : Obj Sets → Objs g xtog x = {!!} - htop : {x y : Set (c₁ ⊔ c₂) } → (x → y) → Hom (pl g) {!!} {!!} + htop : {x y : Set (c₁ ⊔ c₂) } → (x → y) → Hom (pl g) (xtog x) (xtog y) htop = {!!} fo : Graph {suc (c₁ ⊔ c₂)} {c₁ ⊔ c₂} fo = forgetful.fobj {c₁} {c₂} c