changeset 253:24e83b8b81be

fix
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Wed, 11 Sep 2013 20:26:48 +0900
parents e0835b8dd51b
children 45b81fcb8a64
files HomReasoning.agda cat-utility.agda equalizer.agda kleisli.agda yoneda.agda
diffstat 5 files changed, 87 insertions(+), 68 deletions(-) [+]
line wrap: on
line diff
--- a/HomReasoning.agda	Mon Sep 09 16:15:09 2013 +0900
+++ b/HomReasoning.agda	Wed Sep 11 20:26:48 2013 +0900
@@ -159,3 +159,19 @@
      ≈⟨ IsCategory.identityL (Category.isCategory c) ⟩
           g

+
+Lemma62 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) →
+                 { a b : Obj A }  →
+                 ( f g : Hom A a b )
+                      →  A [ A [ (Id {_} {_} {_} {A} b) o f ]  ≈  A [ (Id {_} {_} {_} {A} b) o g ]  ]
+                      →  A [ g ≈ f ]
+Lemma62 A {a} {b} f g 1g=1f = let open  ≈-Reasoning A in
+     begin  
+          g
+     ≈↑⟨ idL  ⟩
+          id b o g
+     ≈↑⟨ 1g=1f ⟩
+          id b o f
+     ≈⟨ idL  ⟩
+          f
+     ∎
--- a/cat-utility.agda	Mon Sep 09 16:15:09 2013 +0900
+++ b/cat-utility.agda	Wed Sep 11 20:26:48 2013 +0900
@@ -11,6 +11,7 @@
 
         id1 :   ∀{c₁ c₂ ℓ  : Level} (A : Category c₁ c₂ ℓ)  (a  : Obj A ) →  Hom A a a
         id1 A a =  (Id {_} {_} {_} {A} a)
+        -- We cannot make A implicit
 
         record IsUniversalMapping  {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') 
                          ( U : Functor B A )
--- a/equalizer.agda	Mon Sep 09 16:15:09 2013 +0900
+++ b/equalizer.agda	Wed Sep 11 20:26:48 2013 +0900
@@ -30,6 +30,7 @@
    equalizer : Hom A c a
    equalizer = e
 
+
 --
 -- Burroni's Flat Equational Definition of Equalizer
 --
@@ -116,7 +117,7 @@
              ≈⟨ cdr assoc ⟩
                     e o (( h-1  o  h)  o k eqa j eq  ) 
              ≈⟨ cdr (car h-1h=1 )  ⟩
-                    e o (id1 A c  o k eqa j eq  ) 
+                    e o (id c  o k eqa j eq  ) 
              ≈⟨ cdr idL  ⟩
                     e o  k eqa j eq  
              ≈⟨ ek=h eqa ⟩
@@ -139,7 +140,7 @@
              ≈⟨ assoc  ⟩
                    (h o   h-1 ) o j 
              ≈⟨ car hh-1=1  ⟩
-                   id1 A c' o j 
+                   id c' o j 
              ≈⟨ idL ⟩
                    j

@@ -194,23 +195,23 @@
 e'←e {c} {c'} {a} {b} {f} {g} {e} {e'} eqa eqa' keqa = let open ≈-Reasoning (A) in begin
                  e o c-iso-r eqa eqa' keqa 
               ≈⟨⟩
-                 e  o  k keqa (id1 A c') ( f1=g1 (fe=ge eqa') (id1 A c') )
+                 e  o  k keqa (id c') ( f1=g1 (fe=ge eqa') (id c') )
               ≈↑⟨ car  (ek=h eqa' ) ⟩
-                 ( equalizer eqa'  o k eqa' e (fe=ge eqa) ) o  k keqa (id1 A c') ( f1=g1 (fe=ge eqa') (id1 A c') )
+                 ( equalizer eqa'  o k eqa' e (fe=ge eqa) ) o  k keqa (id c') ( f1=g1 (fe=ge eqa') (id c') )
               ≈⟨⟩
-                 ( e'  o k eqa' e (fe=ge eqa) ) o  k keqa (id1 A c') ( f1=g1 (fe=ge eqa') (id1 A c') )
+                 ( e'  o k eqa' e (fe=ge eqa) ) o  k keqa (id c') ( f1=g1 (fe=ge eqa') (id c') )
               ≈↑⟨ assoc ⟩
-                 e'  o (( k eqa' e (fe=ge eqa) ) o  k keqa (id1 A c') ( f1=g1 (fe=ge eqa') (id1 A c') ) )
+                 e'  o (( k eqa' e (fe=ge eqa) ) o  k keqa (id c') ( f1=g1 (fe=ge eqa') (id c') ) )
               ≈⟨⟩
-                 e'  o (equalizer keqa  o  k keqa (id1 A c') ( f1=g1 (fe=ge eqa') (id1 A c') ) )
+                 e'  o (equalizer keqa  o  k keqa (id c') ( f1=g1 (fe=ge eqa') (id c') ) )
               ≈⟨ cdr ( ek=h keqa )  ⟩
-                 e'  o id1 A c'
+                 e'  o id c'
               ≈⟨ idR ⟩
                  e'

 
---    e←e' e'←e = e
---    e'←e e←e = e'  is enough for isomorphism but we want to prove l o r = id also.
+--    e←e' e'←e e = e
+--    e'←e e←e e' = e'  is enough for isomorphism but we can prove l o r = id also.
 
 c-iso→ : { c c' a b : Obj A } {f g : Hom A a b } → {e : Hom A c a } {e' : Hom A c' a} ( eqa : Equalizer A e f g) → ( eqa' :  Equalizer A e' f g )
       →  ( keqa : Equalizer A (k eqa' e (fe=ge eqa)) (A [ f o e' ])  (A [ g o e' ]) )
@@ -218,9 +219,9 @@
 c-iso→ {c} {c'} {a} {b} {f} {g} eqa eqa' keqa = let open ≈-Reasoning (A) in begin
                  c-iso-l eqa eqa' keqa o c-iso-r eqa eqa' keqa
               ≈⟨⟩
-                 equalizer keqa  o  k keqa (id1 A c') ( f1=g1 (fe=ge eqa') (id1 A c') )
+                 equalizer keqa  o  k keqa (id c') ( f1=g1 (fe=ge eqa') (id c') )
               ≈⟨ ek=h keqa ⟩
-                 id1 A c'
+                 id c'

 
 c-iso← : { c c' a b : Obj A } {f g : Hom A a b } → {e : Hom A c a } {e' : Hom A c' a} ( eqa : Equalizer A e f g) → ( eqa' :  Equalizer A e' f g )
@@ -230,26 +231,26 @@
 c-iso← {c} {c'} {a} {b} {f} {g} {e} {e'} eqa eqa' keqa keqa'  = let open ≈-Reasoning (A) in begin
                  c-iso-r eqa eqa' keqa o c-iso-l eqa eqa' keqa
               ≈⟨⟩
-                 k keqa (id1 A c') ( f1=g1 (fe=ge eqa') (id1 A c') ) o k eqa' e (fe=ge eqa )
+                 k keqa (id c') ( f1=g1 (fe=ge eqa') (id c') ) o k eqa' e (fe=ge eqa )
               ≈⟨⟩
                  equalizer keqa'  o k eqa' e (fe=ge eqa )
               ≈⟨ cdr ( begin
                      k eqa' e (fe=ge eqa )
                    ≈⟨ uniqueness eqa' ( begin
-                       e' o k keqa' (id1 A c) (f1=g1 (fe=ge eqa) (id1 A c))
+                       e' o k keqa' (id c) (f1=g1 (fe=ge eqa) (id c))
                    ≈↑⟨ car (e'←e eqa eqa' keqa ) ⟩
-                        ( e  o equalizer keqa' ) o k keqa' (id1 A c) (f1=g1 (fe=ge eqa) (id1 A c))
+                        ( e  o equalizer keqa' ) o k keqa' (id c) (f1=g1 (fe=ge eqa) (id c))
                    ≈↑⟨ assoc ⟩
-                         e  o ( equalizer keqa'  o k keqa' (id1 A c) (f1=g1 (fe=ge eqa) (id1 A c)))
+                         e  o ( equalizer keqa'  o k keqa' (id c) (f1=g1 (fe=ge eqa) (id c)))
                    ≈⟨ cdr ( ek=h keqa' ) ⟩
-                         e  o id1 A c
+                         e  o id c
                    ≈⟨ idR ⟩
                        e
                    ∎ )⟩
-                     k keqa' (id1 A c) ( f1=g1 (fe=ge eqa) (id1 A c) )
+                     k keqa' (id c) ( f1=g1 (fe=ge eqa) (id c) )
               ∎ )⟩
-                 equalizer keqa'  o k keqa' (id1 A c) ( f1=g1 (fe=ge eqa) (id1 A c) ) ≈⟨ ek=h keqa' ⟩
-                 id1 A c
+                 equalizer keqa'  o k keqa' (id c) ( f1=g1 (fe=ge eqa) (id c) ) ≈⟨ ek=h keqa' ⟩
+                 id c

 
 
@@ -292,9 +293,9 @@
      lemma-b3 : {a b d : Obj A} (f : Hom A a b ) { h : Hom A d a } → A [ A [ equalizer (eqa f f ) o k (eqa f f) (id1 A a) (f1=f1 f) ] ≈ id1 A a  ]
      lemma-b3 {a} {b} {d} f {h} = let open ≈-Reasoning (A) in
              begin
-                  equalizer (eqa f f) o k (eqa f f) (id1 A a) (f1=f1 f)
+                  equalizer (eqa f f) o k (eqa f f) (id a) (f1=f1 f)
              ≈⟨ ek=h (eqa f f )  ⟩
-                  id1 A a
+                  id a

      lemma-equ4 :  {a b c d : Obj A}  → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) →
                       A [ A [ f o A [ h o equalizer (eqa (A [ f o h ]) (A [ g o h ])) ] ] ≈ A [ g o A [ h o equalizer (eqa (A [ f o h ]) (A [ g o h ])) ] ] ]
@@ -329,13 +330,13 @@
                                                                             k (eqa {a} {b} {c} f' f' {e} ) (id1 A a)  (f1=f1 f') ]
      cong-δ1 {a} {b} {c} {e} {f} {f'} f=f' =  let open ≈-Reasoning (A) in
              begin
-                 k (eqa {a} {b} {c} f  f  {e} ) (id1 A a)  (f1=f1 f) 
+                 k (eqa {a} {b} {c} f  f  {e} ) (id a)  (f1=f1 f) 
              ≈⟨  uniqueness (eqa f f) ( begin
-                 e o k (eqa {a} {b} {c} f' f' {e} ) (id1 A a)  (f1=f1 f') 
+                 e o k (eqa {a} {b} {c} f' f' {e} ) (id a)  (f1=f1 f') 
              ≈⟨ ek=h (eqa {a} {b} {c} f' f' {e} ) ⟩
-                 id1 A a
+                 id a
              ∎ )⟩
-                 k (eqa {a} {b} {c} f' f' {e} ) (id1 A a)  (f1=f1 f') 
+                 k (eqa {a} {b} {c} f' f' {e} ) (id a)  (f1=f1 f') 

 
      lemma-b2 :  {d : Obj A} {h : Hom A d a} → A [
@@ -362,19 +363,19 @@
              ≈⟨ car ((uniqueness (eqa f g) ( begin
                          equalizer (eqa f g) o j 
                 ≈↑⟨ idR  ⟩
-                         (equalizer (eqa f g) o j )  o id1 A d
-                ≈⟨⟩         -- here we decide e (fej) (gej)' is id1 A d
+                         (equalizer (eqa f g) o j )  o id d
+                ≈⟨⟩         -- here we decide e (fej) (gej)' is id d
                         ((equalizer (eqa f g) o j) o equalizer (eqa (f o equalizer (eqa f g {e}) o j) (g o equalizer (eqa f g {e}) o j)))
              ∎ ))) ⟩
                     j o k (eqa (( f o ( equalizer (eqa f g) o j ) )) (( f o ( equalizer (eqa f g) o j ) ))) (id1 A d) (f1=f1 (( f o ( equalizer (eqa f g) o j ) ))) 
              ≈⟨ cdr ((uniqueness (eqa (( f o ( equalizer (eqa f g) o j ) )) (( f o ( equalizer (eqa f g) o j ) ))) ( begin
-                     equalizer (eqa (f o equalizer (eqa f g {e} ) o j) (f o equalizer (eqa f g {e}) o j))  o id1 A d
+                     equalizer (eqa (f o equalizer (eqa f g {e} ) o j) (f o equalizer (eqa f g {e}) o j))  o id d
                 ≈⟨ idR ⟩
                      equalizer (eqa (f o equalizer (eqa f g {e}) o j) (f o equalizer (eqa f g {e}) o j))  
-                ≈⟨⟩         -- here we decide e (fej) (fej)' is id1 A d
-                    id1 A d
+                ≈⟨⟩         -- here we decide e (fej) (fej)' is id d
+                    id d
              ∎ ))) ⟩
-                    j o id1 A d
+                    j o id d
                 ≈⟨ idR ⟩
                     j

@@ -401,17 +402,17 @@
              begin
                  α bur f g e o k1 h eq 
              ≈⟨⟩
-                 α bur f g e o ( γ bur {a} {b} {c} f g h o δ bur {d} {b} {d} (id1 A d) (f o h) )
+                 α bur f g e o ( γ bur {a} {b} {c} f g h o δ bur {d} {b} {d} (id d) (f o h) )
              ≈⟨ assoc ⟩
-                 ( α bur f g e o  γ bur {a} {b} {c} f g h ) o δ bur {d} {b} {d} (id1 A d) (f o h) 
+                 ( α bur f g e o  γ bur {a} {b} {c} f g h ) o δ bur {d} {b} {d} (id d) (f o h) 
              ≈⟨ car (b2 bur) ⟩
-                  ( h o ( α bur ( f o h ) ( g o h ) (id1 A d))) o δ bur {d} {b} {d} (id1 A d) (f o h) 
+                  ( h o ( α bur ( f o h ) ( g o h ) (id d))) o δ bur {d} {b} {d} (id d) (f o h) 
              ≈↑⟨ assoc ⟩
-                   h o ((( α bur ( f o h ) ( g o h ) (id1 A d) )) o δ bur {d} {b} {d} (id1 A d) (f o h)  )
+                   h o ((( α bur ( f o h ) ( g o h ) (id d) )) o δ bur {d} {b} {d} (id d) (f o h)  )
              ≈↑⟨ cdr ( car ( cong-α bur eq)) ⟩
-                   h o ((( α bur ( f o h ) ( f o h ) (id1 A d)))o δ bur {d} {b} {d} (id1 A d) (f o h)  )
-             ≈⟨ cdr (b3 bur {d} {b} {d} (f  o h) {id1 A d} ) ⟩
-                   h o id1 A d
+                   h o ((( α bur ( f o h ) ( f o h ) (id d)))o δ bur {d} {b} {d} (id d) (f o h)  )
+             ≈⟨ cdr (b3 bur {d} {b} {d} (f  o h) {id d} ) ⟩
+                   h o id d
              ≈⟨ idR ⟩
                  h 

@@ -421,11 +422,11 @@
              begin
                 k1 {d} h eq
              ≈⟨⟩
-                γ bur {a} {b} {c} f g h o δ bur {d} {b} {d} (id1 A d) (f o h)
+                γ bur {a} {b} {c} f g h o δ bur {d} {b} {d} (id d) (f o h)
              ≈↑⟨ car (cong-γ bur {a} {b} {c} {d} ek=h ) ⟩
-                γ bur f g (A [ α bur f g e o k' ]) o δ bur {d} {b} {d} (id1 A d) (f o h)
+                γ bur f g (A [ α bur f g e o k' ]) o δ bur {d} {b} {d} (id d) (f o h)
              ≈↑⟨ cdr (cong-δ bur (resp ek=h refl-hom )) ⟩
-                γ bur f g (A [ α bur f g e o k' ]) o δ bur {d} {b} {d} (id1 A d) ( f o ( α bur f g e o k') ) 
+                γ bur f g (A [ α bur f g e o k' ]) o δ bur {d} {b} {d} (id d) ( f o ( α bur f g e o k') ) 
              ≈⟨ b4 bur ⟩
                  k'
--- a/kleisli.agda	Mon Sep 09 16:15:09 2013 +0900
+++ b/kleisli.agda	Wed Sep 11 20:26:48 2013 +0900
@@ -146,7 +146,7 @@
      (     ( TMap μ d o  FMap T h ) o  ( (TMap μ c   o  FMap T g )    o f ) )
    ≈⟨ assoc  ⟩
      ( ( ( TMap μ d o      FMap T h ) o  (TMap μ c   o  FMap T g ) )  o f )
-   ≈⟨ car (sym assoc) ⟩
+   ≈↑⟨ car assoc ⟩
      ( ( TMap μ d o  ( FMap T h     o   ( TMap μ c   o  FMap T g ) ) ) o f )
    ≈⟨ car ( cdr (assoc) ) ⟩
      ( ( TMap μ d o  ( ( FMap T h o       TMap μ c ) o  FMap T g )   ) o f )
@@ -159,11 +159,11 @@

    )))  ⟩
       ( ( ( TMap μ d  o  ( TMap μ ( FObj T d)  o FMap T (  FMap T h ) ) )  o FMap T g )  o f )
-   ≈⟨ car (sym assoc) ⟩
+   ≈↑⟨ car assoc ⟩
      ( ( TMap μ d  o  ( ( TMap μ ( FObj T d)   o FMap T (  FMap T h ) )   o FMap T g ) )   o f )
-   ≈⟨ car ( cdr (sym assoc) ) ⟩
+   ≈↑⟨ car ( cdr assoc ) ⟩
      ( ( TMap μ d  o  ( TMap μ ( FObj T d)   o ( FMap T (  FMap T h ) o FMap T g ) ) )   o f )
-   ≈⟨ car ( cdr (cdr (sym (distr T )))) ⟩
+   ≈↑⟨ car ( cdr (cdr (distr T ))) ⟩
      ( ( TMap μ d  o  ( TMap μ ( FObj T d)     o FMap T ( ( FMap T h  o g ) ) ) )   o f )
    ≈⟨ car assoc ⟩
      ( ( ( TMap μ d  o  TMap μ ( FObj T d)  )  o FMap T ( ( FMap T h  o g ) ) )    o f )
@@ -175,11 +175,11 @@

    )) ⟩
      ( ( ( TMap μ d  o    FMap T ( TMap μ d) ) o FMap T ( ( FMap T h  o g ) ) )    o f )
-   ≈⟨ car (sym assoc) ⟩
+   ≈↑⟨ car assoc ⟩
      ( ( TMap μ d  o  ( FMap T ( TMap μ d )    o FMap T ( ( FMap T h  o g ) ) ) )  o f )
-   ≈⟨ sym assoc ⟩
+   ≈↑⟨ assoc ⟩
      ( TMap μ d  o  ( ( FMap T ( TMap μ d )    o FMap T ( ( FMap T h  o g ) ) )  o f ) )
-   ≈⟨ cdr ( car ( sym ( distr T )))   ⟩
+   ≈↑⟨ cdr ( car (  distr T ))   ⟩
      ( TMap μ d  o ( FMap T ( ( ( TMap μ d )   o ( FMap T h  o g ) ) ) o f ) )
    ≈⟨ refl-hom ⟩
      join M ( ( TMap μ d  o ( FMap T h  o g ) ) ) f
@@ -289,7 +289,7 @@
           begin
               TMap μ (a)  o FMap T (TMap η a)
           ≈⟨ IsMonad.unity2 (isMonad M) ⟩
-             id1 A (FObj T a)
+             id (FObj T a)

         ≈-cong : {a b : Obj A} {f g : KHom a b} → A [ KMap f ≈ KMap g ] → A [ ufmap f ≈ ufmap g ]
         ≈-cong {a} {b} {f} {g} f≈g = let open ≈-Reasoning (A) in
@@ -361,7 +361,7 @@
           ≈⟨ car (sym (nat η)) ⟩
              (FMap T g  o TMap η (b)) o f
           ≈⟨ sym idL ⟩
-             id1 A (FObj T c)  o ((FMap T g  o TMap η (b)) o f)
+             id (FObj T c)  o ((FMap T g  o TMap η (b)) o f)
           ≈⟨ sym (car (IsMonad.unity2 (isMonad M)))  ⟩
              (TMap μ c  o FMap T (TMap η c)) o ((FMap T g  o TMap η (b)) o f)
           ≈⟨ sym assoc  ⟩
@@ -405,7 +405,7 @@
      ≈⟨ assoc  ⟩
            (TMap μ (b)  o  FMap T (TMap η (b))) o FMap T f
      ≈⟨ car (IsMonad.unity2 (isMonad M)) ⟩
-           id1 A (FObj T b) o FMap T f
+           id (FObj T b) o FMap T f
      ≈⟨ idL ⟩
            FMap T f 
      ∎ )
@@ -445,7 +445,7 @@
           sym ( begin
               KMap (( tmap-ε b ) * (  FMap (F_T ○ U_T) f ))
           ≈⟨⟩
-              TMap μ b  o ( FMap T ( id1 A (FObj T b) )  o (  KMap (FMap (F_T ○ U_T) f ) ))
+              TMap μ b  o ( FMap T ( id (FObj T b) )  o (  KMap (FMap (F_T ○ U_T) f ) ))
           ≈⟨ cdr ( cdr (
                begin
                   KMap (FMap (F_T ○ U_T) f ) 
@@ -455,19 +455,19 @@
                  TMap η (FObj T b) o (TMap μ (b)  o FMap T (KMap f))

           ))  ⟩
-              TMap μ b  o ( FMap T ( id1 A (FObj T b) )  o (TMap η (FObj T b) o (TMap μ (b)  o FMap T (KMap f))))
+              TMap μ b  o ( FMap T ( id (FObj T b) )  o (TMap η (FObj T b) o (TMap μ (b)  o FMap T (KMap f))))
           ≈⟨ cdr (car (IsFunctor.identity (isFunctor T))) ⟩
-              TMap μ b  o ( id1 A (FObj T (FObj T b) )  o (TMap η (FObj T b) o (TMap μ (b)  o FMap T (KMap f))))
+              TMap μ b  o ( id (FObj T (FObj T b) )  o (TMap η (FObj T b) o (TMap μ (b)  o FMap T (KMap f))))
           ≈⟨ cdr idL ⟩
               TMap μ b  o  (TMap η (FObj T b) o (TMap μ (b)  o FMap T (KMap f)))
           ≈⟨ assoc ⟩
               (TMap μ b  o  (TMap η (FObj T b))) o (TMap μ (b)  o FMap T (KMap f))
           ≈⟨ (car (IsMonad.unity1 (isMonad M))) ⟩
-              id1 A (FObj T b) o (TMap μ (b)  o FMap T (KMap f))
+              id (FObj T b) o (TMap μ (b)  o FMap T (KMap f))
           ≈⟨ idL ⟩
               TMap μ b  o FMap T (KMap f) 
           ≈⟨ cdr (sym idR) ⟩
-              TMap μ b  o ( FMap T (KMap f)  o id1 A (FObj T a) )
+              TMap μ b  o ( FMap T (KMap f)  o id (FObj T a) )
           ≈⟨⟩
               KMap (f * ( tmap-ε a ))
           ∎ )
@@ -516,9 +516,9 @@
           sym ( begin
               FMap U_T ( TMap nat-ε ( FObj F_T x ) )
           ≈⟨⟩
-              TMap μ x  o FMap T (id1 A (FObj T x) )
+              TMap μ x  o FMap T (id (FObj T x) )
           ≈⟨  cdr (IsFunctor.identity (isFunctor T)) ⟩
-              TMap μ x  o id1 A (FObj T (FObj T x) )
+              TMap μ x  o id (FObj T (FObj T x) )
           ≈⟨ idR ⟩
               TMap μ x
           ∎ )
@@ -536,13 +536,13 @@
                begin
                   ( FMap U_T ( TMap nat-ε b))  o ( TMap nat-η ( FObj U_T b ))
                ≈⟨⟩
-                  (TMap μ (b)  o FMap T (id1 A (FObj T b )))  o ( TMap η ( FObj T b ))
+                  (TMap μ (b)  o FMap T (id (FObj T b )))  o ( TMap η ( FObj T b ))
                ≈⟨ car ( cdr (IsFunctor.identity (isFunctor T))) ⟩
-                  (TMap μ (b)  o (id1 A (FObj T (FObj T b ))))  o ( TMap η ( FObj T b ))
+                  (TMap μ (b)  o (id (FObj T (FObj T b ))))  o ( TMap η ( FObj T b ))
                ≈⟨ car idR ⟩
                   TMap μ (b) o ( TMap η ( FObj T b ))
                ≈⟨ IsMonad.unity1 (isMonad M) ⟩
-                  id1 A (FObj U_T b)
+                  id (FObj U_T b)

            adjoint2 :   {a : Obj A} →
                      KleisliCategory [ KleisliCategory [ ( TMap nat-ε ( FObj F_T a ))  o ( FMap F_T ( TMap nat-η a )) ]  
@@ -551,15 +551,15 @@
                begin
                   KMap (( TMap nat-ε ( FObj F_T a )) * ( FMap F_T ( TMap nat-η a )) )
                ≈⟨⟩
-                  TMap μ a o (FMap T (id1 A (FObj T a) ) o ((TMap η (FObj T a)) o (TMap η a)))
+                  TMap μ a o (FMap T (id (FObj T a) ) o ((TMap η (FObj T a)) o (TMap η a)))
                ≈⟨ cdr ( car ( IsFunctor.identity (isFunctor T))) ⟩
-                  TMap μ a o ((id1 A (FObj T (FObj T a) )) o ((TMap η (FObj T a)) o (TMap η a)))
+                  TMap μ a o ((id (FObj T (FObj T a) )) o ((TMap η (FObj T a)) o (TMap η a)))
                ≈⟨ cdr ( idL ) ⟩
                   TMap μ a o ((TMap η (FObj T a)) o (TMap η a))
                ≈⟨ assoc  ⟩
                   (TMap μ a o (TMap η (FObj T a))) o (TMap η a)
                ≈⟨ car (IsMonad.unity1 (isMonad M)) ⟩
-                  id1 A (FObj T a) o (TMap η a)
+                  id (FObj T a) o (TMap η a)
                ≈⟨ idL ⟩
                   TMap η a
                ≈⟨⟩
--- a/yoneda.agda	Mon Sep 09 16:15:09 2013 +0900
+++ b/yoneda.agda	Wed Sep 11 20:26:48 2013 +0900
@@ -305,13 +305,14 @@
 --     YondaLemma2 : {a b x : Obj A }  → (FObj (FObj YonedaFunctor a) x)  ≡ (FObj (FObj YonedaFunctor b  ) x)  →     
 --         a ≡ b 
 --     YondaLemma2 {a} {b} eq  = {!!}
+--       N.B     = ≡-cong gives you ! a ≡ b, so we cannot cong inv to prove a ≡ b
 --
--- Instead we prove 
+-- Instead we prove only
 --     inv ( FObj YonedaFunctor a )  ≡ a
 
 inv :  {a x : Obj A} ( f : FObj (FObj YonedaFunctor a) x)  →  Obj A
 inv {a} f =  Category.cod A f
 
-YonedaLemma21 :  (a x : Obj A) { f : ( FObj (FObj YonedaFunctor a) x) } →  inv f  ≡ a
-YonedaLemma21 a x {f} = refl
+YonedaLemma21 :  {a x : Obj A} ( f : ( FObj (FObj YonedaFunctor a) x) ) →  inv f  ≡ a
+YonedaLemma21 {a} {x} f = refl