Mercurial > hg > Members > kono > Proof > category
changeset 569:25c18786fbdc
lemma-equ
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 24 Apr 2017 12:17:41 +0900 |
parents | f3fb9061a8ca |
children | 3d6d8fea3e09 |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 11 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Mon Apr 24 12:01:03 2017 +0900 +++ b/SetsCompleteness.agda Mon Apr 24 12:17:41 2017 +0900 @@ -121,10 +121,6 @@ ek=h : { c₂ : Level} → {a b : Obj (Sets {c₂}) } {f g : Hom (Sets {c₂}) a b} → {d : Obj Sets} {h : Hom Sets d a} {eq : Sets [ Sets [ f o h ] ≈ Sets [ g o h ] ]} → Sets [ Sets [ (λ e → equ {_} {a} {b} {f} {g} e ) o k h eq ] ≈ h ] ek=h {_} {_} {_} {_} {_} {d} {h} {eq} = refl -lemma-equ : { c₂ : Level} {a b b' : Obj (Sets {c₂}) } { f g : Hom (Sets {c₂}) a b } { f' g' : Hom (Sets {c₂}) a b' } - (s : sequ a b f g ) ( t : sequ a b' f' g' ) → equ s ≡ equ t -lemma-equ ( elem x eq ) ( elem y eq') = {!!} - open sequ -- equalizer-c = sequ a b f g @@ -196,9 +192,14 @@ open snequ - open import HomReasoning open NTrans + +lemma-equ : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( s : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) + {a b : Obj C } { f : I → I } { se : snequ (ΓObj s Γ) (ΓMap s Γ) } + → snmap (equ (snequ1 se {a} {a} (λ x → x))) a ≡ snmap (equ (snequ1 se {a} {b} f )) a +lemma-equ = {!!} + Cone : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( s : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) → NTrans C Sets (K Sets C (snequ (ΓObj s Γ) (ΓMap s Γ) )) Γ Cone C I s Γ = record { @@ -211,13 +212,13 @@ (Sets [ FMap Γ f o (λ se₁ → snmap (equ (snequ1 se₁ (λ x → x))) a) ]) se ≡⟨⟩ FMap Γ f (snmap (equ (snequ1 se (λ x → x))) a) - ≡⟨ {!!} ⟩ + ≡⟨ ≡cong ( λ g → FMap Γ g (snmap (equ (snequ1 se (λ x → x))) a)) (sym ( hom-iso s ) ) ⟩ FMap Γ (hom← s ( hom→ s f)) (snmap (equ (snequ1 se {a} {a} (λ x → x))) a) - ≡⟨ {!!} ⟩ + ≡⟨ ≡cong ( λ g → FMap Γ (hom← s ( hom→ s f)) g ) ( lemma-equ C I s Γ ) ⟩ FMap Γ (hom← s ( hom→ s f)) (snmap (equ (snequ1 se (hom→ s f ))) a) ≡⟨ fe=ge0 ( snequ1 se (hom→ s f ) ) ⟩ snmap (equ (snequ1 se ( hom→ s f ) )) b - ≡⟨ {!!} ⟩ + ≡⟨ sym ( lemma-equ C I s Γ ) ⟩ snmap (equ (snequ1 se (λ x → x))) b ≡⟨⟩ (Sets [ (λ se₁ → snmap (equ (snequ1 se₁ (λ x → x))) b) o FMap (K Sets C (snequ (ΓObj s Γ) (ΓMap s Γ))) f ]) se @@ -234,7 +235,7 @@ ; t0 = Cone C I s Γ ; isLimit = record { limit = limit1 - ; t0f=t = λ {a t i } → {!!} + ; t0f=t = λ {a t i } → refl ; limit-uniqueness = λ {a} {t} {f} → uniquness1 {a} {t} {f} } } where @@ -254,7 +255,7 @@ record { snmap = λ i → (Sets [ TMap (Cone C I s Γ) i o f ]) x } ≡⟨⟩ record { snmap = λ i → snmap (equ (snequ1 (f x) {i} {i} (λ x → x )) ) i } - ≡⟨ {!!} ⟩ + ≡⟨ ≡cong ( λ g → record { snmap = λ i → g i } ) ( extensionality Sets ( λ i → lemma-equ C I s Γ )) ⟩ record { snmap = λ i₁ → snmap (equ (snequ1 (f x) f')) i₁ } ∎ where open import Relation.Binary.PropositionalEquality